Switch to: References

Add citations

You must login to add citations.
  1. On the relation provable equivalence and on partitions in effectively inseparable sets.Claudio Bernardi - 1981 - Studia Logica 40 (1):29 - 37.
    We generalize a well-knownSmullyan's result, by showing that any two sets of the kindC a = {x/ xa} andC b = {x/ xb} are effectively inseparable (if I b). Then we investigate logical and recursive consequences of this fact (see Introduction).
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Classifying positive equivalence relations.Claudio Bernardi & Andrea Sorbi - 1983 - Journal of Symbolic Logic 48 (3):529-538.
    Given two (positive) equivalence relations ∼ 1 , ∼ 2 on the set ω of natural numbers, we say that ∼ 1 is m-reducible to ∼ 2 if there exists a total recursive function h such that for every x, y ∈ ω, we have $x \sim_1 y \operatorname{iff} hx \sim_2 hy$ . We prove that the equivalence relation induced in ω by a positive precomplete numeration is complete with respect to this reducibility (and, moreover, a "uniformity property" holds). This (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • On recursive enumerability with finite repetitions.Stephan Wehner - 1999 - Journal of Symbolic Logic 64 (3):927-945.
    It is an open problem within the study of recursively enumerable classes of recursively enumerable sets to characterize those recursively enumerable classes which can be recursively enumerated without repetitions. This paper is concerned with a weaker property of r.e. classes, namely that of being recursively enumerable with at most finite repetitions. This property is shown to behave more naturally: First we prove an extension theorem for classes satisfying this property. Then the analogous theorem for the property of recursively enumerable classes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Theorie der Numerierungen I.Ju L. Eršov - 1973 - Mathematical Logic Quarterly 19 (19‐25):289-388.
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • Effectively closed sets and enumerations.Paul Brodhead & Douglas Cenzer - 2008 - Archive for Mathematical Logic 46 (7-8):565-582.
    An effectively closed set, or ${\Pi^{0}_{1}}$ class, may viewed as the set of infinite paths through a computable tree. A numbering, or enumeration, is a map from ω onto a countable collection of objects. One numbering is reducible to another if equality holds after the second is composed with a computable function. Many commonly used numberings of ${\Pi^{0}_{1}}$ classes are shown to be mutually reducible via a computable permutation. Computable injective numberings are given for the family of ${\Pi^{0}_{1}}$ classes and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation