Switch to: References

Add citations

You must login to add citations.
  1. Quantification and Paradox.Edward Ferrier - 2018 - Dissertation, University of Massachusetts Amherst
    I argue that absolutism, the view that absolutely unrestricted quantification is possible, is to blame for both the paradoxes that arise in naive set theory and variants of these paradoxes that arise in plural logic and in semantics. The solution is restrictivism, the view that absolutely unrestricted quantification is not possible. -/- It is generally thought that absolutism is true and that restrictivism is not only false, but inexpressible. As a result, the paradoxes are blamed, not on illicit quantification, but (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Predicativity, the Russell-Myhill Paradox, and Church’s Intensional Logic.Sean Walsh - 2016 - Journal of Philosophical Logic 45 (3):277-326.
    This paper sets out a predicative response to the Russell-Myhill paradox of propositions within the framework of Church’s intensional logic. A predicative response places restrictions on the full comprehension schema, which asserts that every formula determines a higher-order entity. In addition to motivating the restriction on the comprehension schema from intuitions about the stability of reference, this paper contains a consistency proof for the predicative response to the Russell-Myhill paradox. The models used to establish this consistency also model other axioms (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Classical Logic is not Uniquely Characterizable.Isabella McAllister - 2022 - Journal of Philosophical Logic 51 (6):1345-1365.
    I show that it is not possible to uniquely characterize classical logic when working within classical set theory. By building on recent work by Eduardo Barrio, Federico Pailos, and Damian Szmuc, I show that for every inferential level (finite and transfinite), either classical logic is not unique at that level or there exist intuitively valid inferences of that level that are not definable in modern classical set theory. The classical logician is thereby faced with a three-horned dilemma: Give up uniqueness (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation