Switch to: References

Add citations

You must login to add citations.
  1. Incompleteness in the Finite Domain.Pavel Pudlák - 2017 - Bulletin of Symbolic Logic 23 (4):405-441.
    Motivated by the problem of finding finite versions of classical incompleteness theorems, we present some conjectures that go beyond NP ≠ coNP. These conjectures formally connect computational complexity with the difficulty of proving some sentences, which means that high computational complexity of a problem associated with a sentence implies that the sentence is not provable in a weak theory, or requires a long proof. Another reason for putting forward these conjectures is that some results in proof complexity seem to be (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Approximate counting and NP search problems.Leszek Aleksander Kołodziejczyk & Neil Thapen - 2022 - Journal of Mathematical Logic 22 (3).
    Journal of Mathematical Logic, Volume 22, Issue 03, December 2022. We study a new class of NP search problems, those which can be proved total using standard combinatorial reasoning based on approximate counting. Our model for this kind of reasoning is the bounded arithmetic theory [math] of [E. Jeřábek, Approximate counting by hashing in bounded arithmetic, J. Symb. Log. 74(3) (2009) 829–860]. In particular, the Ramsey and weak pigeonhole search problems lie in the new class. We give a purely computational (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Fragments of approximate counting.Samuel R. Buss, Leszek Aleksander Kołodziejczyk & Neil Thapen - 2014 - Journal of Symbolic Logic 79 (2):496-525.
    We study the long-standing open problem of giving$\forall {\rm{\Sigma }}_1^b$separations for fragments of bounded arithmetic in the relativized setting. Rather than considering the usual fragments defined by the amount of induction they allow, we study Jeřábek’s theories for approximate counting and their subtheories. We show that the$\forall {\rm{\Sigma }}_1^b$Herbrandized ordering principle is unprovable in a fragment of bounded arithmetic that includes the injective weak pigeonhole principle for polynomial time functions, and also in a fragment that includes the surjective weak pigeonhole (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations