Switch to: References

Add citations

You must login to add citations.
  1. Towards NP – P via proof complexity and search.Samuel R. Buss - 2012 - Annals of Pure and Applied Logic 163 (7):906-917.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Propositional proof compressions and DNF logic.L. Gordeev, E. Haeusler & L. Pereira - 2011 - Logic Journal of the IGPL 19 (1):62-86.
    This paper is a continuation of dag-like proof compression research initiated in [9]. We investigate proof compression phenomenon in a particular, most transparent case of propositional DNF Logic. We define and analyze a very efficient semi-analytic sequent calculus SEQ*0 for propositional DNF. The efficiency is achieved by adding two special rules CQ and CS; the latter rule is a variant of the weakened substitution rule WS from [9], while the former one being specially designed for DNF sequents. We show that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the computational content of intuitionistic propositional proofs.Samuel R. Buss & Pavel Pudlák - 2001 - Annals of Pure and Applied Logic 109 (1-2):49-64.
    The paper proves refined feasibility properties for the disjunction property of intuitionistic propositional logic. We prove that it is possible to eliminate all cuts from an intuitionistic proof, propositional or first-order, without increasing the Horn closure of the proof. We obtain a polynomial time, interactive, realizability algorithm for propositional intuitionistic proofs. The feasibility of the disjunction property is proved for sequents containing Harrop formulas. Under hardness assumptions for NP and for factoring, it is shown that the intuitionistic propositional calculus does (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Upper bounds on complexity of Frege proofs with limited use of certain schemata.Pavel Naumov - 2006 - Archive for Mathematical Logic 45 (4):431-446.
    The paper considers a commonly used axiomatization of the classical propositional logic and studies how different axiom schemata in this system contribute to proof complexity of the logic. The existence of a polynomial bound on proof complexity of every statement provable in this logic is a well-known open question.The axiomatization consists of three schemata. We show that any statement provable using unrestricted number of axioms from the first of the three schemata and polynomially-bounded in size set of axioms from the (...)
    Download  
     
    Export citation  
     
    Bookmark