Switch to: References

Add citations

You must login to add citations.
  1. Type-Decomposition of an Effect Algebra.David J. Foulis & Sylvia Pulmannová - 2010 - Foundations of Physics 40 (9-10):1543-1565.
    Effect algebras (EAs), play a significant role in quantum logic, are featured in the theory of partially ordered Abelian groups, and generalize orthoalgebras, MV-algebras, orthomodular posets, orthomodular lattices, modular ortholattices, and boolean algebras.We study centrally orthocomplete effect algebras (COEAs), i.e., EAs satisfying the condition that every family of elements that is dominated by an orthogonal family of central elements has a supremum. For COEAs, we introduce a general notion of decomposition into types; prove that a COEA factors uniquely as a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Universal Group of a Heyting Effect Algebra.David J. Foulis - 2006 - Studia Logica 84 (3):407-424.
    A Heyting effect algebra is a lattice-ordered effect algebra that is at the same time a Heyting algebra and for which the Heyting center coincides with the effect-algebra center. Every HEA is both an MV-algebra and a Stone-Heyting algebra and is realized as the unit interval in its own universal group. We show that a necessary and sufficient condition that an effect algebra is an HEA is that its universal group has the central comparability and central Rickart properties.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Logical Connectives on Lattice Effect Algebras.D. J. Foulis & S. Pulmannová - 2012 - Studia Logica 100 (6):1291-1315.
    An effect algebra is a partial algebraic structure, originally formulated as an algebraic base for unsharp quantum measurements. In this article we present an approach to the study of lattice effect algebras (LEAs) that emphasizes their structure as algebraic models for the semantics of (possibly) non-standard symbolic logics. This is accomplished by focusing on the interplay among conjunction, implication, and negation connectives on LEAs, where the conjunction and implication connectives are related by a residuation law. Special cases of LEAs are (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations