Switch to: References

Add citations

You must login to add citations.
  1. Wittgenstein et le lien entre la signification d’un énoncé mathématique et sa preuve.Mathieu Marion & Mitsuhiro Okada - 2012 - Philosophiques 39 (1):101-124.
    The thesis according to which the meaning of a mathematical sentence is given by its proof was held by both Wittgenstein and the intuitionists, following Heyting and Dummett. In this paper, we clarify the meaning of this thesis for Wittgenstein, showing how his position differs from that of the intuitionists. We show how the thesis originates in his thoughts, from the middle period, about proofs by induction, and we sketch his answers to a number of objections, including the idea that, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Quine, Putnam, and the ‘Quine–Putnam’ Indispensability Argument.David Liggins - 2008 - Erkenntnis 68 (1):113 - 127.
    Much recent discussion in the philosophy of mathematics has concerned the indispensability argument—an argument which aims to establish the existence of abstract mathematical objects through appealing to the role that mathematics plays in empirical science. The indispensability argument is standardly attributed to W. V. Quine and Hilary Putnam. In this paper, I show that this attribution is mistaken. Quine's argument for the existence of abstract mathematical objects differs from the argument which many philosophers of mathematics ascribe to him. Contrary to (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Showing Mathematical Flies the Way Out of Foundational Bottles: The Later Wittgenstein as a Forerunner of Lakatos and the Philosophy of Mathematical Practice.José Antonio Pérez-Escobar - 2022 - Kriterion – Journal of Philosophy 36 (2):157-178.
    This work explores the later Wittgenstein’s philosophy of mathematics in relation to Lakatos’ philosophy of mathematics and the philosophy of mathematical practice. I argue that, while the philosophy of mathematical practice typically identifies Lakatos as its earliest of predecessors, the later Wittgenstein already developed key ideas for this community a few decades before. However, for a variety of reasons, most of this work on philosophy of mathematics has gone relatively unnoticed. Some of these ideas and their significance as precursors for (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations