Switch to: References

Add citations

You must login to add citations.
  1. Leveraging Artificial Intelligence for Strategic Business Decision-Making: Opportunities and Challenges.Mohammed Hazem M. Hamadaqa, Mohammad Alnajjar, Mohammed N. Ayyad, Mohammed A. Al-Nakhal, Basem S. Abunasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Information Systems Research (IJAISR) 8 (8):16-23.
    Abstract: Artificial Intelligence (AI) has rapidly evolved, offering transformative capabilities for business decision-making. This paper explores how AI can be leveraged to enhance strategic decision-making in business contexts. It examines the integration of AI-driven analytics, predictive modeling, and automation to improve decision accuracy and operational efficiency. By analyzing current applications and case studies, the paper highlights the opportunities AI presents, including enhanced data insights, risk management, and personalized customer experiences. Additionally, it addresses the challenges businesses face in adopting AI, such (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • AI-Driven Innovations in Agriculture: Transforming Farming Practices and Outcomes.Jehad M. Altayeb, Hassam Eleyan, Nida D. Wishah, Abed Elilah Elmahmoum, Ahmed J. Khalil, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Applied Research (Ijaar) 8 (9):1-6.
    Abstract: Artificial Intelligence (AI) is transforming the agricultural sector, enhancing both productivity and sustainability. This paper delves into the impact of AI technologies on agriculture, emphasizing their application in precision farming, predictive analytics, and automation. AI-driven tools facilitate more efficient crop and resource management, leading to higher yields and a reduced environmental footprint. The paper explores key AI technologies, such as machine learning algorithms for crop monitoring, robotics for automated planting and harvesting, and data analytics for optimizing resource use. Additionally, (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • AI in HRM: Revolutionizing Recruitment, Performance Management, and Employee Engagement.Mostafa El-Ghoul, Mohammed M. Almassri, Mohammed F. El-Habibi, Mohanad H. Al-Qadi, Alaa Abou Eloun, Bassem S. Abu-Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic Applied Research (Ijaar) 8 (9):16-23.
    Artificial Intelligence (AI) is rapidly transforming Human Resource Management (HRM) by enhancing the efficiency and effectiveness of key functions such as recruitment, performance management, and employee engagement. This paper explores the integration of AI technologies in HRM, focusing on their potential to revolutionize these critical areas. In recruitment, AI-driven tools streamline candidate sourcing, screening, and selection processes, leading to more accurate and unbiased hiring decisions. Performance management is similarly transformed, with AI enabling continuous, data-driven feedback and personalized development plans that (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Artificial Intelligence in Digital Media: Opportunities, Challenges, and Future Directions.Basma S. Abu Nasser & Samy S. Abu-Naser - 2024 - International Journal of Academic and Applied Research (IJAAR) 8 (6):1-10.
    Abstract: This research paper explores the transformative impact of artificial intelligence (AI) on digital media, examining both the opportunities it presents and the challenges it poses. The integration of AI into digital media has revolutionized content creation, distribution, and analytics, offering unprecedented levels of personalization, efficiency, and insight. Automated journalism, AI- driven recommendation systems, and advanced audience analytics are among the key areas where AI is making significant contributions. However, the adoption of AI also brings ethical considerations, including concerns about (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Leveraging Artificial Neural Networks for Cancer Prediction: A Synthetic Dataset Approach.Mohammed S. Abu Nasser & Samy S. Abu-Naser - 2023 - International Journal of Academic Engineering Research (IJAER) 7 (11):43-51.
    Abstract: This research explores the application of artificial neural networks (ANNs) in predicting cancer using a synthetically generated dataset designed for research purposes. The dataset comprises 10,000 pseudo-patient records, each characterized by gender, age, smoking history, fatigue, and allergy status, along with a binary indicator for the presence or absence of cancer. The 'Gender,' 'Smoking,' 'Fatigue,' and 'Allergy' attributes are binary, while 'Age' spans a range from 18 to 100 years. The study employs a three-layer ANN architecture to develop a (...)
    Download  
     
    Export citation  
     
    Bookmark