Switch to: References

Add citations

You must login to add citations.
  1. Characterizing existence of certain ultrafilters.Rafał Filipów, Krzysztof Kowitz & Adam Kwela - 2022 - Annals of Pure and Applied Logic 173 (9):103157.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)On extendability to $$F_\sigma $$ ideals.Adam Kwela - 2022 - Archive for Mathematical Logic 61 (7):881-890.
    Answering in negative a question of M. Hrušák, we construct a Borel ideal not extendable to any \(F_\sigma \) ideal and such that it is not Katětov above the ideal \(\mathrm {conv}\).
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)On extendability to Fσ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_\sigma $$\end{document} ideals. [REVIEW]Adam Kwela - 2022 - Archive for Mathematical Logic 61 (7-8):881-890.
    Answering in negative a question of M. Hrušák, we construct a Borel ideal not extendable to any Fσ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_\sigma $$\end{document} ideal and such that it is not Katětov above the ideal conv\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {conv}$$\end{document}.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Density-like and generalized density ideals.Adam Kwela & Paolo Leonetti - 2022 - Journal of Symbolic Logic 87 (1):228-251.
    We show that there exist uncountably many pairwise nonisomorphic density-like ideals on $\omega $ which are not generalized density ideals. In addition, they are nonpathological. This answers a question posed by Borodulin-Nadzieja et al. in [this Journal, vol. 80, pp. 1268–1289]. Lastly, we provide sufficient conditions for a density-like ideal to be necessarily a generalized density ideal.
    Download  
     
    Export citation  
     
    Bookmark