Switch to: References

Add citations

You must login to add citations.
  1. Surmounting the Cartesian Cut Through Philosophy, Physics, Logic, Cybernetics, and Geometry: Self-reference, Torsion, the Klein Bottle, the Time Operator, Multivalued Logics and Quantum Mechanics. [REVIEW]Diego L. Rapoport - 2011 - Foundations of Physics 41 (1):33-76.
    In this transdisciplinary article which stems from philosophical considerations (that depart from phenomenology—after Merleau-Ponty, Heidegger and Rosen—and Hegelian dialectics), we develop a conception based on topological (the Moebius surface and the Klein bottle) and geometrical considerations (based on torsion and non-orientability of manifolds), and multivalued logics which we develop into a unified world conception that surmounts the Cartesian cut and Aristotelian logic. The role of torsion appears in a self-referential construction of space and time, which will be further related to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Torsion Fields, Cartan–Weyl Space–Time and State-Space Quantum Geometries, their Brownian Motions, and the Time Variables.Diego L. Rapoport - 2007 - Foundations of Physics 37 (4-5):813-854.
    We review the relation between spacetime geometries with trace-torsion fields, the so-called Riemann–Cartan–Weyl (RCW) geometries, and their associated Brownian motions. In this setting, the drift vector field is the metric conjugate of the trace-torsion one-form, and the laplacian defined by the RCW connection is the differential generator of the Brownian motions. We extend this to the state-space of non-relativistic quantum mechanics and discuss the relation between a non-canonical quantum RCW geometry in state-space associated with the gradient of the quantum-mechanical expectation (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Quaternion Algebra on 4D Superfluid Quantum Space-Time: Gravitomagnetism.Valeriy I. Sbitnev - 2019 - Foundations of Physics 49 (2):107-143.
    Gravitomagnetic equations result from applying quaternionic differential operators to the energy–momentum tensor. These equations are similar to the Maxwell’s EM equations. Both sets of the equations are isomorphic after changing orientation of either the gravitomagnetic orbital force or the magnetic induction. The gravitomagnetic equations turn out to be parent equations generating the following set of equations: the vorticity equation giving solutions of vortices with nonzero vortex cores and with infinite lifetime; the Hamilton–Jacobi equation loaded by the quantum potential. This equation (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cartan–Weyl Dirac and Laplacian Operators, Brownian Motions: The Quantum Potential and Scalar Curvature, Maxwell’s and Dirac-Hestenes Equations, and Supersymmetric Systems. [REVIEW]Diego L. Rapoport - 2005 - Foundations of Physics 35 (8):1383-1431.
    We present the Dirac and Laplacian operators on Clifford bundles over space–time, associated to metric compatible linear connections of Cartan–Weyl, with trace-torsion, Q. In the case of nondegenerate metrics, we obtain a theory of generalized Brownian motions whose drift is the metric conjugate of Q. We give the constitutive equations for Q. We find that it contains Maxwell’s equations, characterized by two potentials, an harmonic one which has a zero field (Bohm-Aharonov potential) and a coexact term that generalizes the Hertz (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations