Switch to: References

Add citations

You must login to add citations.
  1. The Mathematical Description of a Generic Physical System.Federico Zalamea - 2015 - Topoi 34 (2):339-348.
    When dealing with a certain class of physical systems, the mathematical characterization of a generic system aims to describe the phase portrait of all its possible states. Because they are defined only up to isomorphism, the mathematical objects involved are “schematic structures”. If one imposes the condition that these mathematical definitions completely capture the physical information of a given system, one is led to a strong requirement of individuation for physical states. However, we show there are not enough qualitatively distinct (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Problematic Objects between Mathematics and Mechanics.Emily R. Grosholz - 1990 - PSA Proceedings of the Biennial Meeting of the Philosophy of Science Association 1990 (2):385-395.
    The relationship between the objects of mathematics and physics has been a recurrent source of philosophical debate. Rationalist philosophers can minimize the distance between mathematical and physical domains by appealing to transcendental categories, but then are left with the problem of where to locate those categories ontologically. Empiricists can locate their objects in the material realm, but then have difficulty explaining certain peculiar “transcendental” features of mathematics like the timelessness of its objects and the unfalsifiability of (at least some of) (...)
    Download  
     
    Export citation  
     
    Bookmark