Switch to: References

Add citations

You must login to add citations.
  1. Controlling the dependence degree of a recursive enumerable vector space.Richard A. Shore - 1978 - Journal of Symbolic Logic 43 (1):13-22.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Decidable subspaces and recursively enumerable subspaces.C. J. Ash & R. G. Downey - 1984 - Journal of Symbolic Logic 49 (4):1137-1145.
    A subspace V of an infinite dimensional fully effective vector space V ∞ is called decidable if V is r.e. and there exists an r.e. W such that $V \oplus W = V_\infty$ . These subspaces of V ∞ are natural analogues of recursive subsets of ω. The set of r.e. subspaces forms a lattice L(V ∞ ) and the set of decidable subspaces forms a lower semilattice S(V ∞ ). We analyse S(V ∞ ) and its relationship with L(V (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Classifications of degree classes associated with r.e. subspaces.R. G. Downey & J. B. Remmel - 1989 - Annals of Pure and Applied Logic 42 (2):105-124.
    In this article we show that it is possible to completely classify the degrees of r.e. bases of r.e. vector spaces in terms of weak truth table degrees. The ideas extend to classify the degrees of complements and splittings. Several ramifications of the classification are discussed, together with an analysis of the structure of the degrees of pairs of r.e. summands of r.e. spaces.
    Download  
     
    Export citation  
     
    Bookmark   9 citations