Switch to: References

Add citations

You must login to add citations.
  1. Separators and adjustment sets in causal graphs: Complete criteria and an algorithmic framework.Benito van der Zander, Maciej Liśkiewicz & Johannes Textor - 2019 - Artificial Intelligence 270 (C):1-40.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A new proposal how to handle counterexamples to Markov causation à la Cartwright, or: fixing the chemical factory.Nina Retzlaff & Alexander Gebharter - 2020 - Synthese 197 (4):1467-1486.
    Cartwright (Synthese 121(1/2):3–27, 1999a; The dappled world, Cambridge University Press, Cambridge, 1999b) attacked the view that causal relations conform to the Markov condition by providing a counterexample in which a common cause does not screen off its effects: the prominent chemical factory. In this paper we suggest a new way to handle counterexamples to Markov causation such as the chemical factory. We argue that Cartwright’s as well as similar scenarios feature a certain kind of non-causal dependence that kicks in once (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • What is right with 'bayes net methods' and what is wrong with 'hunting causes and using them'?Clark Glymour - 2010 - British Journal for the Philosophy of Science 61 (1):161-211.
    Nancy Cartwright's recent criticisms of efforts and methods to obtain causal information from sample data using automated search are considered. In addition to reviewing that effort, I argue that almost all of her criticisms are false and rest on misreading, overgeneralization, or neglect of the relevant literature.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On the completeness of orientation rules for causal discovery in the presence of latent confounders and selection bias.Jiji Zhang - 2008 - Artificial Intelligence 172 (16-17):1873-1896.
    Causal discovery becomes especially challenging when the possibility of latent confounding and/or selection bias is not assumed away. For this task, ancestral graph models are particularly useful in that they can represent the presence of latent confounding and selection effect, without explicitly invoking unobserved variables. Based on the machinery of ancestral graphs, there is a provably sound causal discovery algorithm, known as the FCI algorithm, that allows the possibility of latent confounders and selection bias. However, the orientation rules used in (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Causal identifiability and piecemeal experimentation.Conor Mayo-Wilson - 2019 - Synthese 196 (8):3029-3065.
    In medicine and the social sciences, researchers often measure only a handful of variables simultaneously. The underlying assumption behind this methodology is that combining the results of dozens of smaller studies can, in principle, yield as much information as one large study, in which dozens of variables are measured simultaneously. Mayo-Wilson :864–874, 2011, Br J Philos Sci 65:213–249, 2013. https://doi.org/10.1093/bjps/axs030) shows that assumption is false when causal theories are inferred from observational data. This paper extends Mayo-Wilson’s results to cases in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What Is Going on Inside the Arrows? Discovering the Hidden Springs in Causal Models.Alexander Murray-Watters & Clark Glymour - 2015 - Philosophy of Science 82 (4):556-586.
    Using Gebharter’s representation, we consider aspects of the problem of discovering the structure of unmeasured submechanisms when the variables in those submechanisms have not been measured. Exploiting an early insight of Sober’s, we provide a correct algorithm for identifying latent, endogenous structure—submechanisms—for a restricted class of structures. The algorithm can be merged with other methods for discovering causal relations among unmeasured variables, and feedback relations between measured variables and unobserved causes can sometimes be learned.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Sound and complete causal identification with latent variables given local background knowledge.Tian-Zuo Wang, Tian Qin & Zhi-Hua Zhou - 2023 - Artificial Intelligence 322 (C):103964.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Combinatorial Solution to Causal Compatibility.Thomas C. Fraser - 2020 - Journal of Causal Inference 8 (1):22-53.
    Within the field of causal inference, it is desirable to learn the structure of causal relationships holding between a system of variables from the correlations that these variables exhibit; a sub-problem of which is to certify whether or not a given causal hypothesis is compatible with the observed correlations. A particularly challenging setting for assessing causal compatibility is in the presence of partial information; i.e. when some of the variables are hidden/latent. This paper introduces the possible worlds framework as a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A local method for identifying causal relations under Markov equivalence.Zhuangyan Fang, Yue Liu, Zhi Geng, Shengyu Zhu & Yangbo He - 2022 - Artificial Intelligence 305 (C):103669.
    Download  
     
    Export citation  
     
    Bookmark  
  • Causal Conclusions that Flip Repeatedly and Their Justification.Kevin T. Kelly & Conor Mayo-Wilson - 2010 - Proceedings of the Twenty Sixth Conference on Uncertainty in Artificial Intelligence 26:277-286.
    Over the past two decades, several consistent procedures have been designed to infer causal conclusions from observational data. We prove that if the true causal network might be an arbitrary, linear Gaussian network or a discrete Bayes network, then every unambiguous causal conclusion produced by a consistent method from non-experimental data is subject to reversal as the sample size increases any finite number of times. That result, called the causal flipping theorem, extends prior results to the effect that causal discovery (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Constructing Variables That Support Causal Inference.Stephen E. Fancsali - unknown
    Download  
     
    Export citation  
     
    Bookmark   2 citations