Switch to: References

Add citations

You must login to add citations.
  1. The Fan Theorem, its strong negation, and the determinacy of games.Wim Veldman - forthcoming - Archive for Mathematical Logic:1-66.
    In the context of a weak formal theory called Basic Intuitionistic Mathematics $$\textsf{BIM}$$ BIM, we study Brouwer’s Fan Theorem and a strong negation of the Fan Theorem, Kleene’s Alternative (to the Fan Theorem). We prove that the Fan Theorem is equivalent to contrapositions of a number of intuitionistically accepted axioms of countable choice and that Kleene’s Alternative is equivalent to strong negations of these statements. We discuss finite and infinite games and introduce a constructively useful notion of determinacy. We prove (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Diagonalisation and Church's Thesis: Kleene's Homework.Enrique Alonso & Maria Manzano - 2005 - History and Philosophy of Logic 26 (2):93-113.
    In this paper we will discuss the active part played by certain diagonal arguments in the genesis of computability theory. 1 In some cases it is enough to assume the enumerability of Y while in others the effective enumerability is a substantial demand. These enigmatical words by Kleene were our point of departure: When Church proposed this thesis, I sat down to disprove it by diagonalizing out of the class of the λ–definable functions. But, quickly realizing that the diagonalization cannot (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Metric spaces in synthetic topology.Andrej Bauer & Davorin Lešnik - 2012 - Annals of Pure and Applied Logic 163 (2):87-100.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On local non‐compactness in recursive mathematics.Jakob G. Simonsen - 2006 - Mathematical Logic Quarterly 52 (4):323-330.
    A metric space is said to be locally non-compact if every neighborhood contains a sequence that is eventually bounded away from every element of the space, hence contains no accumulation point. We show within recursive mathematics that a nonvoid complete metric space is locally non-compact iff it is without isolated points.The result has an interesting consequence in computable analysis: If a complete metric space has a computable witness that it is without isolated points, then every neighborhood contains a computable sequence (...)
    Download  
     
    Export citation  
     
    Bookmark