Switch to: References

Add citations

You must login to add citations.
  1. Metainferentially substructural validity theories.Federico Pailos - forthcoming - Journal of Applied Non-Classical Logics.
    1. As Graham Priest claims in Priest (forthcoming), blocking semantic paradoxes is not hard. It just requires giving up (at least) one of the principles involved in the derivation of the undesirabl...
    Download  
     
    Export citation  
     
    Bookmark  
  • A truth-maker semantics for ST: refusing to climb the strict/tolerant hierarchy.Ulf Hlobil - 2022 - Synthese 200 (5):1-23.
    The paper presents a truth-maker semantics for Strict/Tolerant Logic (ST), which is the currently most popular logic among advocates of the non-transitive approach to paradoxes. Besides being interesting in itself, the truth-maker presentation of ST offers a new perspective on the recently discovered hierarchy of meta-inferences that, according to some, generalizes the idea behind ST. While fascinating from a mathematical perspective, there is no agreement on the philosophical significance of this hierarchy. I aim to show that there is no clear (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Vague connectives.Paula Teijeiro - 2022 - Philosophical Studies 180 (5-6):1559-1578.
    Most literature on vagueness deals with the phenomenon as applied to predicates. On the contrary, even the idea of vague connectives seems to be taken as an oxymoron. The goal of this article is to propose an understanding of vague logical connectives based on vague quantifiers. The main idea is that the phenomenon of vagueness translates to connectives in terms of the property of Abnormality. I also argue that Prior’s Tonk can, according to this approach, be considered a vague connective. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Metainferential Solution to the Semantic Paradoxes.Rea Golan - 2023 - Journal of Philosophical Logic 52 (3):797-820.
    Substructural solutions to the semantic paradoxes have been broadly discussed in recent years. In particular, according to the non-transitive solution, we have to give up the metarule of Cut, whose role is to guarantee that the consequence relation is transitive. This concession—giving up a meta rule—allows us to maintain the entire consequence relation of classical logic. The non-transitive solution has been generalized in recent works into a hierarchy of logics where classicality is maintained at more and more metainferential levels. All (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Inferential Constants.Camillo Fiore, Federico Pailos & Mariela Rubin - 2022 - Journal of Philosophical Logic 52 (3):767-796.
    A metainference is usually understood as a pair consisting of a collection of inferences, called premises, and a single inference, called conclusion. In the last few years, much attention has been paid to the study of metainferences—and, in particular, to the question of what are the valid metainferences of a given logic. So far, however, this study has been done in quite a poor language. Our usual sequent calculi have no way to represent, e.g. negations, disjunctions or conjunctions of inferences. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Anti-exceptionalism, truth and the BA-plan.Eduardo Alejandro Barrio, Federico Pailos & Joaquín Toranzo Calderón - 2021 - Synthese 199 (5-6):12561-12586.
    Anti-exceptionalism about logic states that logical theories have no special epistemological status. Such theories are continuous with scientific theories. Contemporary anti-exceptionalists include the semantic paradoxes as a part of the elements to accept a logical theory. Exploring the Buenos Aires Plan, the recent development of the metainferential hierarchy of ST\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {ST}}$$\end{document}-logics shows that there are multiple options to deal with such paradoxes. There is a whole ST\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Higher-Level Paradoxes and Substructural Solutions.Rashed Ahmad - forthcoming - Studia Logica:1-25.
    There have been recent arguments against the idea that substructural solutions are uniform. The claim is that even if the substructuralist solves the common semantic paradoxes uniformly by targeting Cut or Contraction, with additional machinery, we can construct higher-level paradoxes (e.g., a higher-level Liar, a higher-level Curry, and a meta-validity Curry). These higher-level paradoxes do not use metainferential Cut or Contraction, but rather, higher-level Cuts and higher-level Contractions. These kinds of paradoxes suggest that targeting Cut or Contraction is not enough (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation