Switch to: References

Add citations

You must login to add citations.
  1. Space as Form of Intuition and as Formal Intuition: On the Note to B160 in Kant's Critique of Pure Reason.Christian Onof & Dennis Schulting - 2015 - Philosophical Review 124 (1):1-58.
    In his argument for the possibility of knowledge of spatial objects, in the Transcendental Deduction of the B-version of the Critique of Pure Reason, Kant makes a crucial distinction between space as “form of intuition” and space as “formal intuition.” The traditional interpretation regards the distinction between the two notions as reflecting a distinction between indeterminate space and determinations of space by the understanding, respectively. By contrast, a recent influential reading has argued that the two notions can be fused into (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Kant and non-euclidean geometry.Amit Hagar - 2008 - Kant Studien 99 (1):80-98.
    It is occasionally claimed that the important work of philosophers, physicists, and mathematicians in the nineteenth and in the early twentieth centuries made Kant’s critical philosophy of geometry look somewhat unattractive. Indeed, from the wider perspective of the discovery of non-Euclidean geometries, the replacement of Newtonian physics with Einstein’s theories of relativity, and the rise of quantificational logic, Kant’s philosophy seems “quaint at best and silly at worst”.1 While there is no doubt that Kant’s transcendental project involves his own conceptions (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • What is Kantian Philosophy of Mathematics? An Overview of Contemporary Studies.Maksim D. Evstigneev - 2021 - Kantian Journal 40 (2):151-178.
    This review of contemporary discussions of Kantian philosophy of mathematics is timed for the publication of the essay Kant’s Philosophy of Mathematics. Volume 1: The Critical Philosophy and Its Roots (2020) edited by Carl Posy and Ofra Rechter. The main discussions and comments are based on the texts contained in this collection. I first examine the more general questions which have to do not only with the philosophy of mathematics, but also with related areas of Kant’s philosophy, e. g. the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Kant's schematism and his philosophy of geometry.Frank J. Leavitt - 1990 - Studies in History and Philosophy of Science Part A 22 (4):647-659.
    Kant's philosophy of geometry rests upon his doctrine of the "schematism" which I argue is formally identical to the ability to grass the middle term of an Aristotelian syllogism. The doctrine fails to avoid obscurities which were already present in Plato, Aristotle, and Hume.
    Download  
     
    Export citation  
     
    Bookmark   1 citation