Switch to: References

Add citations

You must login to add citations.
  1. How the Natural Interpretation of QM Avoids the Recent No-Go Theorem.Anthony Rizzi - 2020 - Foundations of Physics 50 (3):204-215.
    A recent no-go theorem gives an extension of the Wigner’s Friend argument that purports to prove the “Quantum theory cannot consistently describe the use of itself.” The argument is complex and thought provoking, but fails in a straightforward way if one treats QM as a statistical theory in the most fundamental sense, i.e. if one applies the so-called ensemble interpretation. This explanation is given here at an undergraduate level, which can be edifying for experts and students alike. A recent paper (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the Reality of the Quantum State Once Again: A No-Go Theorem for ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi$$\end{document}-Ontic Models. [REVIEW]Christine A. Aidala, Andrea Oldofredi & Gabriele Carcassi - 2024 - Foundations of Physics 54 (1):1-15.
    In this paper we show that ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi$$\end{document}-ontic models, as defined by Harrigan and Spekkens (HS), cannot reproduce quantum theory. Instead of focusing on probability, we use information theoretic considerations to show that all pure states of ψ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\psi$$\end{document}-ontic models must be orthogonal to each other, in clear violation of quantum mechanics. Given that (i) Pusey, Barrett and Rudolph (PBR) previously showed that ψ\documentclass[12pt]{minimal} \usepackage{amsmath} (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations