Switch to: References

Add citations

You must login to add citations.
  1. A new paradox and the reconciliation of Lorentz and Galilean transformations.Hongyu Guo - 2021 - Synthese 199 (3-4):8113-8142.
    One of the most debated problems in the foundations of the special relativity theory is the role of conventionality. A common belief is that the Lorentz transformation is correct but the Galilean transformation is wrong. It is another common belief that the Galilean transformation is incompatible with Maxwell equations. However, the “principle of general covariance” in general relativity makes any spacetime coordinate transformation equally valid. This includes the Galilean transformation as well. This renders a new paradox. This new paradox is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Relativistic Rotation: A Comparison of Theories. [REVIEW]Robert D. Klauber - 2007 - Foundations of Physics 37 (2):198-252.
    Alternative theories of relativistic rotation considered viable as of 2004 are compared in the light of experiments reported in 2005. En route, the contentious issue of simultaneity choice in rotation is resolved by showing that only one simultaneity choice, the one possessing continuous time, gives rise, via the general relativistic equation of motion, to the correct Newtonian limit Coriolis acceleration. In addition, the widely dispersed argument purporting Lorentz contraction in rotation and the concomitant curved surface of a rotating disk is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Special Relativity Kinematics with Anisotropic Propagation of Light and Correspondence Principle.Georgy I. Burde - 2016 - Foundations of Physics 46 (12):1573-1597.
    The purpose of the present paper is to develop kinematics of the special relativity with an anisotropy of the one-way speed of light. As distinct from a common approach, when the issue of anisotropy of the light propagation is placed into the context of conventionality of distant simultaneity, it is supposed that an anisotropy of the one-way speed of light is due to a real space anisotropy. In that situation, some assumptions used in developing the standard special relativity kinematics are (...)
    Download  
     
    Export citation  
     
    Bookmark