Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Counting the maximal intermediate constructive logics.Mauro Ferrari & Pierangelo Miglioli - 1993 - Journal of Symbolic Logic 58 (4):1365-1401.
    A proof is given that the set of maximal intermediate propositional logics with the disjunction property and the set of maximal intermediate predicate logics with the disjunction property and the explicit definability property have the power of continuum. To prove our results, we introduce various notions which might be interesting by themselves. In particular, we illustrate a method to generate wide sets of pairwise "constructively incompatible constructive logics". We use a notion of "semiconstructive" logic and define wide sets of "constructive" (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On maximal intermediate predicate constructive logics.Alessandro Avellone, Camillo Fiorentini, Paolo Mantovani & Pierangelo Miglioli - 1996 - Studia Logica 57 (2-3):373 - 408.
    We extend to the predicate frame a previous characterization of the maximal intermediate propositional constructive logics. This provides a technique to get maximal intermediate predicate constructive logics starting from suitable sets of classically valid predicate formulae we call maximal nonstandard predicate constructive logics. As an example of this technique, we exhibit two maximal intermediate predicate constructive logics, yet leaving open the problem of stating whether the two logics are distinct. Further properties of these logics will be also investigated.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A method to single out maximal propositional logics with the disjunction property II.Mauro Ferrari & Pierangelo Miglioli - 1995 - Annals of Pure and Applied Logic 76 (2):117-168.
    This is the second part of a paper devoted to the study of the maximal intermediate propositional logics with the disjunction property , whose first part has appeared in this journal with the title “A method to single out maximal propositional logics with the disjunction property I”. In the first part we have explained the general results upon which a method to single out maximal constructive logics is based and have illustrated such a method by exhibiting the Kripke semantics of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The disjunction property of intermediate propositional logics.Alexander Chagrov & Michael Zakharyashchev - 1991 - Studia Logica 50 (2):189 - 216.
    This paper is a survey of results concerning the disjunction property, Halldén-completeness, and other related properties of intermediate prepositional logics and normal modal logics containing S4.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • A method to single out maximal propositional logics with the disjunction property I.Mauro Ferrari & Pierangelo Miglioli - 1995 - Annals of Pure and Applied Logic 76 (1):1-46.
    This is the first part of a paper concerning intermediate propositional logics with the disjunction property which cannot be properly extended into logics of the same kind, and are therefore called maximal. To deal with these logics, we use a method based on the search of suitable nonstandard logics, which has an heuristic content and has allowed us to discover a wide family of logics, as well as to get their maximality proofs in a uniform way. The present part illustrates (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On maximal intermediate logics with the disjunction property.Larisa L. Maksimova - 1986 - Studia Logica 45 (1):69 - 75.
    For intermediate logics, there is obtained in the paper an algebraic equivalent of the disjunction propertyDP. It is proved that the logic of finite binary trees is not maximal among intermediate logics withDP. Introduced is a logicND, which has the only maximal extension withDP, namely, the logicML of finite problems.
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • A mind of a non-countable set of ideas.Alexander Citkin - 2008 - Logic and Logical Philosophy 17 (1-2):23-39.
    The paper is dedicated to the 80th birthday of the outstanding Russian logician A.V. Kuznetsov. It is addressing a history of the ideas and research conducted by him in non-classical and intermediate logics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An infinite class of maximal intermediate propositional logics with the disjunction property.Pierangelo Miglioli - 1992 - Archive for Mathematical Logic 31 (6):415-432.
    Infinitely many intermediate propositional logics with the disjunction property are defined, each logic being characterized both in terms of a finite axiomatization and in terms of a Kripke semantics with the finite model property. The completeness theorems are used to prove that any two logics are constructively incompatible. As a consequence, one deduces that there are infinitely many maximal intermediate propositional logics with the disjunction property.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Axiomatic extensions of the constructive logic with strong negation and the disjunction property.Andrzej Sendlewski - 1995 - Studia Logica 55 (3):377 - 388.
    We study axiomatic extensions of the propositional constructive logic with strong negation having the disjunction property in terms of corresponding to them varieties of Nelson algebras. Any such varietyV is characterized by the property: (PQWC) ifA,B V, thenA×B is a homomorphic image of some well-connected algebra ofV.We prove:• each varietyV of Nelson algebras with PQWC lies in the fibre –1(W) for some varietyW of Heyting algebras having PQWC, • for any varietyW of Heyting algebras with PQWC the least and the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • European Summer Meeting of the Association for Symbolic Logic (Logic Colloquium'88), Padova, 1988.R. Ferro - 1990 - Journal of Symbolic Logic 55 (1):387-435.
    Download  
     
    Export citation  
     
    Bookmark