Switch to: References

Add citations

You must login to add citations.
  1. The Mathematical Description of a Generic Physical System.Federico Zalamea - 2015 - Topoi 34 (2):339-348.
    When dealing with a certain class of physical systems, the mathematical characterization of a generic system aims to describe the phase portrait of all its possible states. Because they are defined only up to isomorphism, the mathematical objects involved are “schematic structures”. If one imposes the condition that these mathematical definitions completely capture the physical information of a given system, one is led to a strong requirement of individuation for physical states. However, we show there are not enough qualitatively distinct (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Chasing Individuation: Mathematical Description of Physical Systems.Zalamea Federico - 2016 - Dissertation, Paris Diderot University
    This work is a conceptual analysis of certain recent developments in the mathematical foundations of Classical and Quantum Mechanics which have allowed to formulate both theories in a common language. From the algebraic point of view, the set of observables of a physical system, be it classical or quantum, is described by a Jordan-Lie algebra. From the geometric point of view, the space of states of any system is described by a uniform Poisson space with transition probability. Both these structures (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Invariants and Mathematical Structuralism.Georg Schiemer - 2014 - Philosophia Mathematica 22 (1):70-107.
    The paper outlines a novel version of mathematical structuralism related to invariants. The main objective here is twofold: first, to present a formal theory of structures based on the structuralist methodology underlying work with invariants. Second, to show that the resulting framework allows one to model several typical operations in modern mathematical practice: the comparison of invariants in terms of their distinctive power, the bundling of incomparable invariants to increase their collective strength, as well as a heuristic principle related to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations