Switch to: References

Add citations

You must login to add citations.
  1. Cartan–Weyl Dirac and Laplacian Operators, Brownian Motions: The Quantum Potential and Scalar Curvature, Maxwell’s and Dirac-Hestenes Equations, and Supersymmetric Systems. [REVIEW]Diego L. Rapoport - 2005 - Foundations of Physics 35 (8):1383-1431.
    We present the Dirac and Laplacian operators on Clifford bundles over space–time, associated to metric compatible linear connections of Cartan–Weyl, with trace-torsion, Q. In the case of nondegenerate metrics, we obtain a theory of generalized Brownian motions whose drift is the metric conjugate of Q. We give the constitutive equations for Q. We find that it contains Maxwell’s equations, characterized by two potentials, an harmonic one which has a zero field (Bohm-Aharonov potential) and a coexact term that generalizes the Hertz (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On Superluminal Particles and the Extended Relativity Theories.Carlos Castro - 2012 - Foundations of Physics 42 (9):1135-1152.
    Superluminal particles are studied within the framework of the Extended Relativity theory in Clifford spaces (C-spaces). In the simplest scenario, it is found that it is the contribution of the Clifford scalar component π of the poly-vector-valued momentum which is responsible for the superluminal behavior in ordinary spacetime due to the fact that the effective mass $\mathcal{M} = \sqrt{ M^{2} - \pi^{2} }$ is imaginary (tachyonic). However, from the point of view of C-space, there is no superluminal (tachyonic) behavior because (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations