Switch to: References

Add citations

You must login to add citations.
  1. Meeting the brain on its own terms.Philipp Haueis - 2014 - Frontiers in Human Neuroscience 815 (8):86890.
    In contemporary human brain mapping, it is commonly assumed that the “mind is what the brain does”. Based on that assumption, task-based imaging studies of the last three decades measured differences in brain activity that are thought to reflect the exercise of human mental capacities (e.g., perception, attention, memory). With the advancement of resting state studies, tractography and graph theory in the last decade, however, it became possible to study human brain connectivity without relying on cognitive tasks or constructs. It (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Robustness, Reliability, and Overdetermination (1981).William C. Wimsatt - 2012 - In Lena Soler (ed.), Characterizing the robustness of science: after the practice turn in philosophy of science. New York: Springer Verlag. pp. 61-78.
    The use of multiple means of determination to “triangulate” on the existence and character of a common phenomenon, object, or result has had a long tradition in science but has seldom been a matter of primary focus. As with many traditions, it is traceable to Aristotle, who valued having multiple explanations of a phenomenon, and it may also be involved in his distinction between special objects of sense and common sensibles. It is implicit though not emphasized in the distinction between (...)
    Download  
     
    Export citation  
     
    Bookmark   151 citations  
  • The role of disciplinary perspectives in an epistemology of scientific models.Mieke Boon - 2020 - European Journal for Philosophy of Science 10 (3):1-34.
    The purpose of this article is to develop an epistemology of scientific models in scientific research practices, and to show that disciplinary perspectives have crucial role in such an epistemology. A transcendental approach is taken, aimed at explanations of the kinds of questions relevant to the intended epistemology, such as “How is it possible that models provide knowledge about aspects of reality?” The approach is also pragmatic in the sense that the questions and explanations must be adequate and relevant to (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Epistemological and educational issues in teaching practice-oriented scientific research: roles for philosophers of science.Mieke Boon, Mariana Orozco & Kishore Sivakumar - 2022 - European Journal for Philosophy of Science 12 (1):1-23.
    The complex societal challenges of the twenty-first Century require scientific researchers and academically educated professionals capable of conducting scientific research in complex problem contexts. Our central claim is that educational approaches inspired by a traditional empiricist epistemology insufficiently foster the required deep conceptual understanding and higher-order thinking skills necessary for epistemic tasks in scientific research. Conversely, we argue that constructivist epistemologies provide better guidance to educational approaches to promote research skills. We also argue that teachers adopting a constructivist learning theory (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Fuzzy Brain. Vagueness and Mapping Connectivity in the Human Cerebral Cortex.Philipp Haueis - 2012 - Frontiers in Neuroanatomy 37 (6).
    While the past century of neuroscientific research has brought considerable progress in defining the boundaries of the human cerebral cortex, there are cases in which the demarcation of one area from another remains fuzzy. Despite the existence of clearly demarcated areas, examples of gradual transitions between areas are known since early cytoarchitectonic studies. Since multi-modal anatomical approaches and functional connectivity studies brought renewed attention to the topic, a better understanding of the theoretical and methodological implications of fuzzy boundaries in brain (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Brain in the Shell. Assessing the Stakes and the Transformative Potential of the Human Brain Project.Philipp Haueis & Jan Slaby - 2015 - In Philipp Haueis & Jan Slaby (eds.), Neuroscience and Critique. London: pp. 117–140.
    The “Human Brain Project” (HBP) is a large-scale European neuroscience and information communication technology (ICT) project that has been a matter of heated controversy since its inception. With its aim to simulate the entire human brain with the help of supercomputing technologies, the HBP plans to fundamentally change neuroscientific research practice, medical diagnosis, and eventually the use of computers itself. Its controversial nature and its potential impacts render the HBP a subject of crucial importance for critical studies of science and (...)
    Download  
     
    Export citation  
     
    Bookmark