Switch to: References

Add citations

You must login to add citations.
  1. Klein's model of mathematical creativity.Eduard Glas - 2002 - Science & Education 11 (1):95-104.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Die methematische Moderne und die Herrschaft der Zeichen.Moritz Epple - 1996 - NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin 4 (1):173-180.
    Download  
     
    Export citation  
     
    Bookmark  
  • From form to function: A reassessment of Felix Klein's unified programme of mathematical research, education and development.Eduard Glas - 1993 - Studies in History and Philosophy of Science Part A 24 (4):611-631.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Geometry and generality in Frege's philosophy of arithmetic.Jamie Tappenden - 1995 - Synthese 102 (3):319 - 361.
    This paper develops some respects in which the philosophy of mathematics can fruitfully be informed by mathematical practice, through examining Frege's Grundlagen in its historical setting. The first sections of the paper are devoted to elaborating some aspects of nineteenth century mathematics which informed Frege's early work. (These events are of considerable philosophical significance even apart from the connection with Frege.) In the middle sections, some minor themes of Grundlagen are developed: the relationship Frege envisions between arithmetic and geometry and (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • The Constitution of Weyl’s Pure Infinitesimal World Geometry.C. D. McCoy - 2022 - Hopos: The Journal of the International Society for the History of Philosophy of Science 12 (1):189–208.
    Hermann Weyl was one of the most important figures involved in the early elaboration of the general theory of relativity and its fundamentally geometrical spacetime picture of the world. Weyl’s development of “pure infinitesimal geometry” out of relativity theory was the basis of his remarkable attempt at unifying gravitation and electromagnetism. Many interpreters have focused primarily on Weyl’s philosophical influences, especially the influence of Husserl’s transcendental phenomenology, as the motivation for these efforts. In this article, I argue both that these (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Existence Assumptions and Logical Principles: Choice Operators in Intuitionistic Logic.Corey Edward Mulvihill - 2015 - Dissertation, University of Waterloo
    Hilbert’s choice operators τ and ε, when added to intuitionistic logic, strengthen it. In the presence of certain extensionality axioms they produce classical logic, while in the presence of weaker decidability conditions for terms they produce various superintuitionistic intermediate logics. In this thesis, I argue that there are important philosophical lessons to be learned from these results. To make the case, I begin with a historical discussion situating the development of Hilbert’s operators in relation to his evolving program in the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Frege on Axioms, Indirect Proof, and Independence Arguments in Geometry: Did Frege Reject Independence Arguments?Jamie Tappenden - 2000 - Notre Dame Journal of Formal Logic 41 (3):271-315.
    It is widely believed that some puzzling and provocative remarks that Frege makes in his late writings indicate he rejected independence arguments in geometry, particularly arguments for the independence of the parallels axiom. I show that this is mistaken: Frege distinguished two approaches to independence arguments and his puzzling remarks apply only to one of them. Not only did Frege not reject independence arguments across the board, but also he had an interesting positive proposal about the logical structure of correct (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Kuhn, Lakatos, and the image of mathematics.Eduard Glas - 1995 - Philosophia Mathematica 3 (3):225-247.
    In this paper I explore possibilities of bringing post-positivist philosophies of empirical science to bear on the dynamics of mathematical development. This is done by way of a convergent accommodation of a mathematical version of Lakatos's methodology of research programmes, and a version of Kuhn's account of scientific change that is made applicable to mathematics by cleansing it of all references to the psychology of perception. The resulting view is argued in the light of two case histories of radical conceptual (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Perspective on Hilbert.David E. Rowe - 1997 - Perspectives on Science 5 (4):533-570.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Erwin Finlay Freundlich and Testing Einstein's Theory of Relativity.Klaus Hentschel - 1994 - Archive for History of Exact Sciences 47 (2):143-201.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • David Hilbert and the axiomatization of physics (1894–1905).Leo Corry - 1997 - Archive for History of Exact Sciences 51 (2):83-198.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Abstract relations: bibliography and the infra-structures of modern mathematics.Michael J. Barany - 2021 - Synthese 198 (S26):6277-6290.
    Beginning at the end of the nineteenth century, systematic scientific abstracting played a crucial role in reconfiguring the sciences on an international scale. For mathematicians, the 1931 launch of the Zentralblatt für Mathematik and 1940 launch of Mathematical Reviews marked and intensified a fundamental transformation, not just to the geographic scale of professional mathematics but to the very nature of mathematicians’ research and theories. It was not an accident that mathematical abstracting in this period coincided with an embrace across mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The late arrival of academic applied mathematics in the United States: a paradox, theses, and literature.Reinhard Siegmund-Schultze - 2003 - NTM Zeitschrift für Geschichte der Wissenschaften, Technik und Medizin 11 (2):116-127.
    The article discusses the “paradox of the late (around 1940) arrival of academic applied mathematics in the U.S.” as compared to Europe, in particular Germany. A short description of both the indigenous traditions in the U.S. and (in some more detail) of the transfer of scientific ideas, persons, and ideals originating in Europe, particularly in Germany, is given, and some theses, relevant literature, and a tentative solution of the “paradox” are provided.
    Download  
     
    Export citation  
     
    Bookmark  
  • Truth vs. provability – philosophical and historical remarks.Roman Murawski - 2002 - Logic and Logical Philosophy 10:93.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Alfred Clebsch’s “Geometrical Clothing” of the theory of the quintic equation.François Lê - 2017 - Archive for History of Exact Sciences 71 (1):39-70.
    This paper describes Alfred Clebsch’s 1871 article that gave a geometrical interpretation of elements of the theory of the general algebraic equation of degree 5. Clebsch’s approach is used here to illuminate the relations between geometry, intuition, figures, and visualization at the time. In this paper, we try to delineate clearly what he perceived as geometric in his approach, and to show that Clebsch’s use of geometrical objects and techniques is not intended to aid visualization matters, but rather is a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation