Switch to: References

Citations of:

Mouse sets

Annals of Pure and Applied Logic 87 (1):1-100 (1997)

Add citations

You must login to add citations.
  1. Inner model operators in L.Mitch Rudominer - 2000 - Annals of Pure and Applied Logic 101 (2-3):147-184.
    An inner model operator is a function M such that given a Turing degree d, M is a countable set of reals, d M, and M has certain closure properties. The notion was introduced by Steel. In the context of AD, we study inner model operators M such that for a.e. d, there is a wellorder of M in L). This is related to the study of mice which are below the minimal inner model with ω Woodin cardinals. As a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Descriptive inner model theory.Grigor Sargsyan - 2013 - Bulletin of Symbolic Logic 19 (1):1-55.
    The purpose of this paper is to outline some recent progress in descriptive inner model theory, a branch of set theory which studies descriptive set theoretic and inner model theoretic objects using tools from both areas. There are several interlaced problems that lie on the border of these two areas of set theory, but one that has been rather central for almost two decades is the conjecture known as the Mouse Set Conjecture. One particular motivation for resolving MSC is that (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The largest countable inductive set is a mouse set.Mitch Rudominer - 1999 - Journal of Symbolic Logic 64 (2):443-459.
    Let κ R be the least ordinal κ such that L κ (R) is admissible. Let $A = \{x \in \mathbb{R} \mid (\exists\alpha such that x is ordinal definable in L α (R)}. It is well known that (assuming determinacy) A is the largest countable inductive set of reals. Let T be the theory: ZFC - Replacement + "There exists ω Woodin cardinals which are cofinal in the ordinals." T has consistency strength weaker than that of the theory ZFC + (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • An undecidable extension of Morley's theorem on the number of countable models.Christopher J. Eagle, Clovis Hamel, Sandra Müller & Franklin D. Tall - 2023 - Annals of Pure and Applied Logic 174 (9):103317.
    Download  
     
    Export citation  
     
    Bookmark   1 citation