Switch to: References

Add citations

You must login to add citations.
  1. The twofold role of diagrams in Euclid’s plane geometry.Marco Panza - 2012 - Synthese 186 (1):55-102.
    Proposition I.1 is, by far, the most popular example used to justify the thesis that many of Euclid’s geometric arguments are diagram-based. Many scholars have recently articulated this thesis in different ways and argued for it. My purpose is to reformulate it in a quite general way, by describing what I take to be the twofold role that diagrams play in Euclid’s plane geometry (EPG). Euclid’s arguments are object-dependent. They are about geometric objects. Hence, they cannot be diagram-based unless diagrams (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Introduction: The History of Early Mathematics – Ways of Re-Writing.Reviel Netz - 2003 - Science in Context 16 (3).
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Operationalism: An Interpretation of the Philosophy of Ancient Greek Geometry.Viktor Blåsjö - 2022 - Foundations of Science 27 (2):587-708.
    I present a systematic interpretation of the foundational purpose of constructions in ancient Greek geometry. I argue that Greek geometers were committed to an operationalist foundational program, according to which all of mathematics—including its entire ontology and epistemology—is based entirely on concrete physical constructions. On this reading, key foundational aspects of Greek geometry are analogous to core tenets of 20th-century operationalist/positivist/constructivist/intuitionist philosophy of science and mathematics. Operationalism provides coherent answers to a range of traditional philosophical problems regarding classical mathematics, such (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Formal Ontology and Mathematics. A Case Study on the Identity of Proofs.Matteo Bianchetti & Giorgio Venturi - 2023 - Topoi 42 (1):307-321.
    We propose a novel, ontological approach to studying mathematical propositions and proofs. By “ontological approach” we refer to the study of the categories of beings or concepts that, in their practice, mathematicians isolate as fruitful for the advancement of their scientific activity (like discovering and proving theorems, formulating conjectures, and providing explanations). We do so by developing what we call a “formal ontology” of proofs using semantic modeling tools (like RDF and OWL) developed by the computer science community. In this (...)
    Download  
     
    Export citation  
     
    Bookmark