Switch to: References

Add citations

You must login to add citations.
  1. MOND-Like Acceleration in Integrable Weyl Geometric Gravity.Erhard Scholz - 2016 - Foundations of Physics 46 (2):176-208.
    We study a Weyl geometric scalar tensor theory of gravity with scalar field \ and scale invariant “aquadratic” kinematical Lagrange density. The Weylian scale connection in Einstein gauge induces an additional acceleration. In the weak field, static, low velocity limit it acquires the deep MOND form of Milgrom/Bekenstein’s gravity. The energy momentum of \ leads to another add on to Newton acceleration. Both additional accelerations together imply a MOND-ian phenomenology of the model. It has unusual transition functions \, \nu _w\). (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Proof of the Spin–Statistics Theorem.Enrico Santamato & Francesco De Martini - 2015 - Foundations of Physics 45 (7):858-873.
    The traditional standard quantum mechanics theory is unable to solve the spin–statistics problem, i.e. to justify the utterly important “Pauli Exclusion Principle”. A complete and straightforward solution of the spin–statistics problem is presented on the basis of the “conformal quantum geometrodynamics” theory. This theory provides a Weyl-gauge invariant formulation of the standard quantum mechanics and reproduces successfully all relevant quantum processes including the formulation of Dirac’s or Schrödinger’s equation, of Heisenberg’s uncertainty relations and of the nonlocal EPR correlations. When the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Proof of the Spin Statistics Connection 2: Relativistic Theory.Enrico Santamato & Francesco De Martini - 2017 - Foundations of Physics 47 (12):1609-1625.
    The traditional standard theory of quantum mechanics is unable to solve the spin–statistics problem, i.e. to justify the utterly important “Pauli Exclusion Principle” but by the adoption of the complex standard relativistic quantum field theory. In a recent paper :858–873, 2015) we presented a proof of the spin–statistics problem in the nonrelativistic approximation on the basis of the “Conformal Quantum Geometrodynamics”. In the present paper, by the same theory the proof of the spin–statistics theorem is extended to the relativistic domain (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Formulation of Spinors in Terms of Gauge Fields.S. R. Vatsya - 2015 - Foundations of Physics 45 (2):142-157.
    It is shown in the present paper that the transformation relating a parallel transported vector in a Weyl space to the original one is the product of a multiplicative gauge transformation and a proper orthochronous Lorentz transformation. Such a Lorentz transformation admits a spinor representation, which is obtained and used to deduce the transportation properties of a Weyl spinor, which are then expressed in terms of a composite gauge group defined as the product of a multiplicative gauge group and the (...)
    Download  
     
    Export citation  
     
    Bookmark