It is a frequent assumption that—via superluminal information transfers—superluminal signals capable of enabling communication are necessarily exchanged in any quantum theory that posits hidden superluminal influences. However, does the presence of hidden superluminal influences automatically imply superluminal signalling and communication? The non-signalling theorem mediates the apparent conflict between quantum mechanics and the theory of special relativity. However, as a ‘no-go’ theorem there exist two opposing interpretations of the non-signalling constraint: foundational and operational. Concerning Bell’s theorem, we argue that Bell employed (...) both interpretations, and that he finally adopted the operational position which is associated often with ontological quantum theory, e.g., de Broglie–Bohm theory. This position we refer to as “effective non-signalling”. By contrast, associated with orthodox quantum mechanics is the foundational position referred to here as “axiomatic non-signalling”. In search of a decisive communication-theoretic criterion for differentiating between “axiomatic” and “effective” non-signalling, we employ the operational framework offered by Shannon’s mathematical theory of communication, whereby we distinguish between Shannon signals and non-Shannon signals. We find that an effective non-signalling theorem represents two sub-theorems: Non-transfer-control theorem, and Non-signification-control theorem. Employing NTC and NSC theorems, we report that effective, instead of axiomatic, non-signalling is entirely sufficient for prohibiting nonlocal communication. Effective non-signalling prevents the instantaneous, i.e., superluminal, transfer of message-encoded information through the controlled use—by a sender-receiver pair —of informationally-correlated detection events, e.g., in EPR-type experiments. An effective non-signalling theorem allows for nonlocal quantum information transfer yet—at the same time—effectively denies superluminal signalling and communication. (shrink)