Switch to: References

Add citations

You must login to add citations.
  1. Incomparable prime ideals of recursively enumerable degrees.William C. Calhoun - 1993 - Annals of Pure and Applied Logic 63 (1):39-56.
    Calhoun, W.C., Incomparable prime ideals of recursively enumerable degrees, Annals of Pure and Applied Logic 63 39–56. We show that there is a countably infinite antichain of prime ideals of recursively enumerable degrees. This solves a generalized form of Post's problem.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Upper bounds on ideals in the computably enumerable Turing degrees.George Barmpalias & André Nies - 2011 - Annals of Pure and Applied Logic 162 (6):465-473.
    We study ideals in the computably enumerable Turing degrees, and their upper bounds. Every proper ideal in the c.e. Turing degrees has an incomplete upper bound. It follows that there is no prime ideal in the c.e. Turing degrees. This answers a question of Calhoun [2]. Every proper ideal in the c.e. Turing degrees has a low2 upper bound. Furthermore, the partial order of ideals under inclusion is dense.
    Download  
     
    Export citation  
     
    Bookmark   3 citations