Switch to: References

Add citations

You must login to add citations.
  1. Closed Maximality Principles and Generalized Baire Spaces.Philipp Lücke - 2019 - Notre Dame Journal of Formal Logic 60 (2):253-282.
    Given an uncountable regular cardinal κ, we study the structural properties of the class of all sets of functions from κ to κ that are definable over the structure 〈H,∈〉 by a Σ1-formula with parameters. It is well known that many important statements about these classes are not decided by the axioms of ZFC together with large cardinal axioms. In this paper, we present other canonical extensions of ZFC that provide a strong structure theory for these classes. These axioms are (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A null ideal for inaccessibles.Sy-David Friedman & Giorgio Laguzzi - 2017 - Archive for Mathematical Logic 56 (5-6):691-697.
    In this paper we introduce a tree-like forcing notion extending some properties of the random forcing in the context of 2κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2^\kappa $$\end{document}, κ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\kappa $$\end{document} inaccessible, and study its associated ideal of null sets and notion of measurability. This issue was addressed by Shelah ), arXiv:0904.0817, Problem 0.5) and concerns the definition of a forcing which is κκ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations