Switch to: References

Add citations

You must login to add citations.
  1. On the elimination of imaginaries from certain valued fields.Philip Scowcroft & Angus Macintyre - 1993 - Annals of Pure and Applied Logic 61 (3):241-276.
    A nontrivial ring with unit eliminates imaginaries just in case its complete theory has the following property: every definable m-ary equivalence relation E may be defined by a formula f = f, where f is an m-ary definable function. We show that for certain natural expansions of the field of p-adic numbers, elimination of imaginaries fails or is independent of ZPC. Similar results hold for certain fields of formal power series.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On Groups with Definable F-Generics Definable in P-Adically Closed Fields.Anand Pillay & Y. A. O. Ningyuan - 2023 - Journal of Symbolic Logic 88 (4):1334-1353.
    The aim of this paper is to develop the theory of groups definable in the p-adic field ${{\mathbb {Q}}_p}$, with “definable f-generics” in the sense of an ambient saturated elementary extension of ${{\mathbb {Q}}_p}$. We call such groups definable f-generic groups.So, by a “definable f-generic” or $dfg$ group we mean a definable group in a saturated model with a global f-generic type which is definable over a small model. In the present context the group is definable over ${{\mathbb {Q}}_p}$, and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Cell decomposition for P‐minimal fields.Marie-Hélène Mourgues - 2009 - Mathematical Logic Quarterly 55 (5):487-492.
    In [12], P. Scowcroft and L. van den Dries proved a cell decomposition theorem for p-adically closed fields. We work here with the notion of P-minimal fields defined by D. Haskell and D. Macpherson in [6]. We prove that a P-minimal field K admits cell decomposition if and only if K has definable selection. A preprint version in French of this result appeared as a prepublication [8].
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Pseudo real closed fields, pseudo p-adically closed fields and NTP2.Samaria Montenegro - 2017 - Annals of Pure and Applied Logic 168 (1):191-232.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Turing meets Schanuel.Angus Macintyre - 2016 - Annals of Pure and Applied Logic 167 (10):901-938.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Rationality of p-adic poincaré series: uniformity in p.Angus Macintyre - 1990 - Annals of Pure and Applied Logic 49 (1):31-74.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reducts of p-adically closed fields.Eva Leenknegt - 2014 - Archive for Mathematical Logic 53 (3-4):285-306.
    In this paper, we consider reducts of p-adically closed fields. We introduce a notion of shadows: sets Mf={∈K2∣|y|=|f|}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${M_f = \{ \in K^2 \mid |y| = |f|\}}$$\end{document}, where f is a semi-algebraic function. Adding symbols for such sets to a reduct of the ring language, we obtain expansions of the semi-affine language where multiplication is nowhere definable, thus giving a negative answer to a question posed by Marker, Peterzil and Pillay. The second (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Topologizing Interpretable Groups in p-Adically Closed Fields.Will Johnson - 2023 - Notre Dame Journal of Formal Logic 64 (4):571-609.
    We consider interpretable topological spaces and topological groups in a p-adically closed field K. We identify a special class of “admissible topologies” with topological tameness properties like generic continuity, similar to the topology on definable subsets of Kn. We show that every interpretable set has at least one admissible topology, and that every interpretable group has a unique admissible group topology. We then consider definable compactness (in the sense of Fornasiero) on interpretable groups. We show that an interpretable group is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A transfer theorem in constructive p-adic algebra.Deirdre Haskell - 1992 - Annals of Pure and Applied Logic 58 (1):29-55.
    The main result of this paper is a transfer theorem which describes the relationship between constructive validity and classical validity for a class of first-order sentences over the p-adics. The proof of one direction of the theorem uses a principle of intuitionism; the proof of the other direction is classically valid. Constructive verifications of known properties of the p-adics are indicated. In particular, the existence of cylindric algebraic decompositions for the p-adics is used.
    Download  
     
    Export citation  
     
    Bookmark  
  • Computable valued fields.Matthew Harrison-Trainor - 2018 - Archive for Mathematical Logic 57 (5-6):473-495.
    We investigate the computability-theoretic properties of valued fields, and in particular algebraically closed valued fields and p-adically closed valued fields. We give an effectiveness condition, related to Hensel’s lemma, on a valued field which is necessary and sufficient to extend the valuation to any algebraic extension. We show that there is a computable formally p-adic field which does not embed into any computable p-adic closure, but we give an effectiveness condition on the divisibility relation in the value group which is (...)
    Download  
     
    Export citation  
     
    Bookmark