Switch to: References

Add citations

You must login to add citations.
  1. A New Perspective on Semi-Retractions and the Ramsey Property.Dana Bartošová & Lynn Scow - 2024 - Journal of Symbolic Logic 89 (3):945-979.
    We investigate the notion of a semi-retraction between two first-order structures (in typically different signatures) that was introduced by the second author as a link between the Ramsey property and generalized indiscernible sequences. We look at semi-retractions through a new lens establishing transfers of the Ramsey property and finite Ramsey degrees under quite general conditions that are optimal as demonstrated by counterexamples. Finally, we compare semi-retractions to the category theoretic notion of a pre-adjunction.
    Download  
     
    Export citation  
     
    Bookmark  
  • Products of Classes of Finite Structures.Vince Guingona, Miriam Parnes & Lynn Scow - 2023 - Notre Dame Journal of Formal Logic 64 (4):441-469.
    We study the preservation of certain properties under products of classes of finite structures. In particular, we examine indivisibility, definable self-similarity, the amalgamation property, and the disjoint n-amalgamation property. We explore how each of these properties interacts with the lexicographic product, full product, and free superposition of classes of structures. Additionally, we consider the classes of theories which admit configurations indexed by these products. In particular, we show that, under mild assumptions, the products considered in this article do not yield (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Positive indiscernibles.Mark Kamsma - 2024 - Archive for Mathematical Logic 63 (7):921-940.
    We generalise various theorems for finding indiscernible trees and arrays to positive logic: based on an existing modelling theorem for s-trees, we prove modelling theorems for str-trees, str$$_0$$ 0 -trees (the reduct of str-trees that forgets the length comparison relation) and arrays. In doing so, we prove stronger versions for basing—rather than locally basing or EM-basing—str-trees on s-trees and str$$_0$$ 0 -trees on str-trees. As an application we show that a thick positive theory has k-$$\mathsf {TP_2}$$ TP 2 iff it (...)
    Download  
     
    Export citation  
     
    Bookmark