Switch to: References

Add citations

You must login to add citations.
  1. Eliminating Electron Self-repulsion.Charles T. Sebens - 2023 - Foundations of Physics 53 (4):1-15.
    Problems of self-interaction arise in both classical and quantum field theories. To understand how such problems are to be addressed in a quantum theory of the Dirac and electromagnetic fields (quantum electrodynamics), we can start by analyzing a classical theory of these fields. In such a classical field theory, the electron has a spread-out distribution of charge that avoids some of the problems of self-interaction facing point charge models. However, there remains the problem that the electron will experience self-repulsion. This (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Disappearance and Reappearance of Potential Energy in Classical and Quantum Electrodynamics.Charles T. Sebens - 2022 - Foundations of Physics 52 (5):1-30.
    In electrostatics, we can use either potential energy or field energy to ensure conservation of energy. In electrodynamics, the former option is unavailable. To ensure conservation of energy, we must attribute energy to the electromagnetic field and, in particular, to electromagnetic radiation. If we adopt the standard energy density for the electromagnetic field, then potential energy seems to disappear. However, a closer look at electrodynamics shows that this conclusion actually depends on the kind of matter being considered. Although we cannot (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The fundamentality of fields.Charles T. Sebens - 2022 - Synthese 200 (5):1-28.
    There is debate as to whether quantum field theory is, at bottom, a quantum theory of fields or particles. One can take a field approach to the theory, using wave functionals over field configurations, or a particle approach, using wave functions over particle configurations. This article argues for a field approach, presenting three advantages over a particle approach: particle wave functions are not available for photons, a classical field model of the electron gives a superior account of both spin and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (In)effective realism?Juha Saatsi - 2022 - European Journal for Philosophy of Science 12 (2):1-16.
    Matthias Egg argues that scientific realism can be reconciled with quantum mechanics and its foundational underdetermination by focusing realist commitments on ‘effective’ ontology. I argue in general terms that Egg’s effective realism is ontologically overly promiscuous. I illustrate the issue in relation to both Newtonian mechanics and quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations