Switch to: References

Add citations

You must login to add citations.
  1. Greek and Vedic Geometry.Frits Staal - 1999 - Journal of Indian Philosophy 27 (1/2):105-127.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mathematical reasoning: induction, deduction and beyond.David Sherry - 2006 - Studies in History and Philosophy of Science Part A 37 (3):489-504.
    Mathematics used to be portrayed as a deductive science. Stemming from Polya, however, is a philosophical movement which broadens the concept of mathematical reasoning to include inductive or quasi-empirical methods. Interest in inductive methods is a welcome turn from foundationalism toward a philosophy grounded in mathematical practice. Regrettably, though, the conception of mathematical reasoning embraced by quasi-empiricists is still too narrow to include the sort of thought-experiment which Mueller describes as traditional mathematical proof and which Lakatos examines in Proofs and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The role of diagrams in mathematical arguments.David Sherry - 2008 - Foundations of Science 14 (1-2):59-74.
    Recent accounts of the role of diagrams in mathematical reasoning take a Platonic line, according to which the proof depends on the similarity between the perceived shape of the diagram and the shape of the abstract object. This approach is unable to explain proofs which share the same diagram in spite of drawing conclusions about different figures. Saccheri’s use of the bi-rectangular isosceles quadrilateral in Euclides Vindicatus provides three such proofs. By forsaking abstract objects it is possible to give a (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Diagrams, Conceptual Space and Time, and Latent Geometry.Lorenzo Magnani - 2022 - Axiomathes 32 (6):1483-1503.
    The “origins” of (geometric) space is examined from the perspective of the so-called “conceptual space” or “semantic space”. Semantic space is characterized by its fundamental “locality” that generates an “implicit” mode of geometrizing. This view is examined from within three perspectives. First, the role that various diagrammatic entities play in the everyday life and pragmatic activities of selected ethnic groups is illustrated. Secondly, it is shown how conceptual spaces are fundamentally linked to the meaning effects of particular natural languages and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Thales's sure path.David Sherry - 1999 - Studies in History and Philosophy of Science Part A 30 (4):621-650.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The mathematics in the structures of Stonehenge.Albert Kainzinger - 2011 - Archive for History of Exact Sciences 65 (1):67-97.
    The development of ancient civilizations and their achievements in sciences such as mathematics and astronomy are well researched for script-using civilizations. On the basis of oral tradition and mnemonic artifacts illiterate ancient civilizations were able to attain an adequate level of knowledge. The Neolithic and Bronze Age earthworks and circles are such mnemonic artifacts. Explanatory models are given for the shape of the stone formations and the ditch of Stonehenge reflecting the circular and specific non-circular shapes of these structures. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the volume of a sphere.A. Seidenberg - 1988 - Archive for History of Exact Sciences 39 (2):97-119.
    Download  
     
    Export citation  
     
    Bookmark  
  • A neolithic oral tradition for the van der Waerden/Seidenberg origin of mathematics.Jerold Mathews - 1985 - Archive for History of Exact Sciences 34 (3):193-220.
    Download  
     
    Export citation  
     
    Bookmark   2 citations