Switch to: References

Add citations

You must login to add citations.
  1. Appearing Out of Nowhere: The Emergence of Spacetime in Quantum Gravity.Karen Crowther - 2014 - Dissertation, University of Sydney
    Quantum gravity is understood as a theory that, in some sense, unifies general relativity (GR) and quantum theory, and is supposed to replace GR at extremely small distances (high-energies). It may be that quantum gravity represents the breakdown of spacetime geometry described by GR. The relationship between quantum gravity and spacetime has been deemed ``emergence'', and the aim of this thesis is to investigate and explicate this relation. After finding traditional philosophical accounts of emergence to be inappropriate, I develop a (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Consistent Histories of Systems and Measurements in Spacetime.Ed Seidewitz - 2011 - Foundations of Physics 41 (7):1163-1192.
    Traditional interpretations of quantum theory in terms of wave function collapse are particularly unappealing when considering the universe as a whole, where there is no clean separation between classical observer and quantum system and where the description is inherently relativistic. As an alternative, the consistent histories approach provides an attractive “no collapse” interpretation of quantum physics. Consistent histories can also be linked to path-integral formulations that may be readily generalized to the relativistic case. A previous paper described how, in such (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Multiplicity in Everett׳s interpretation of quantum mechanics.Louis Marchildon - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):274-284.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Avoiding Haag’s Theorem with Parameterized Quantum Field Theory.Ed Seidewitz - 2017 - Foundations of Physics 47 (3):355-374.
    Under the normal assumptions of quantum field theory, Haag’s theorem states that any field unitarily equivalent to a free field must itself be a free field. Unfortunately, the derivation of the Dyson series perturbation expansion relies on the use of the interaction picture, in which the interacting field is unitarily equivalent to the free field but must still account for interactions. Thus, the traditional perturbative derivation of the scattering matrix in quantum field theory is mathematically ill defined. Nevertheless, perturbative quantum (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation