Switch to: References

Add citations

You must login to add citations.
  1. What Logical Evidence Could not be.Matteo Baggio - 2023 - Philosophia 51 (5):2559–2587.
    By playing a crucial role in settling open issues in the philosophical debate about logical consequence, logical evidence has become the holy grail of inquirers investigating the domain of logic. However, despite its indispensable role in this endeavor, logical evidence has retained an aura of mystery. Indeed, there seems to be a great disharmony in conceiving the correct nature and scope of logical evidence among philosophers. In this paper, I examine four widespread conceptions of logical evidence to argue that all (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Should pluralists be pluralists about pluralism?Robert Passmann - 2021 - Synthese 199 (5-6):12663-12682.
    How many correct logics are there? Monists endorse that there is one, pluralists argue for many, and nihilists claim that there are none. Reasoning about these views requires a logic. That is the meta-logic. It turns out that there are some meta-logical challenges specifically for the pluralists. I will argue that these depend on an implicitly assumed absoluteness of correct logic. Pluralists can solve the challenges by giving up on this absoluteness and instead adopt contextualism about correct logic. This contextualism (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • For Better and for Worse. Abstractionism, Good Company, and Pluralism.Andrea Sereni, Maria Paola Sforza Fogliani & Luca Zanetti - 2023 - Review of Symbolic Logic 16 (1):268-297.
    A thriving literature has developed over logical and mathematical pluralism – i.e. the views that several rival logical and mathematical theories can be equally correct. These have unfortunately grown separate; instead, they both could gain a great deal by a closer interaction. Our aim is thus to present some novel forms of abstractionist mathematical pluralism which can be modeled on parallel ways of substantiating logical pluralism (also in connection with logical anti-exceptionalism). To do this, we start by discussing the Good (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Why classical logic is privileged: justification of logics based on translatability.Gerhard Schurz - 2021 - Synthese 199 (5-6):13067-13094.
    In Sect. 1 it is argued that systems of logic are exceptional, but not a priori necessary. Logics are exceptional because they can neither be demonstrated as valid nor be confirmed by observation without entering a circle, and their motivation based on intuition is unreliable. On the other hand, logics do not express a priori necessities of thinking because alternative non-classical logics have been developed. Section 2 reflects the controversies about four major kinds of non-classical logics—multi-valued, intuitionistic, paraconsistent and quantum (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Meaning-Preserving Translations of Non-classical Logics into Classical Logic: Between Pluralism and Monism.Gerhard Schurz - 2021 - Journal of Philosophical Logic 51 (1):27-55.
    In order to prove the validity of logical rules, one has to assume these rules in the metalogic. However, rule-circular ‘justifications’ are demonstrably without epistemic value. Is a non-circular justification of a logical system possible? This question attains particular importance in view of lasting controversies about classical versus non-classical logics. In this paper the question is answered positively, based on meaning-preserving translations between logical systems. It is demonstrated that major systems of non-classical logic, including multi-valued, paraconsistent, intuitionistic and quantum logics, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Paraconsistent and Paracomplete Zermelo–Fraenkel Set Theory.Yurii Khomskii & Hrafn Valtýr Oddsson - forthcoming - Review of Symbolic Logic:1-31.
    We present a novel treatment of set theory in a four-valued paraconsistent and paracomplete logic, i.e., a logic in which propositions can be both true and false, and neither true nor false. Our approach is a significant departure from previous research in paraconsistent set theory, which has almost exclusively been motivated by a desire to avoid Russell’s paradox and fulfil naive comprehension. Instead, we prioritise setting up a system with a clear ontology of non-classical sets, which can be used to (...)
    Download  
     
    Export citation  
     
    Bookmark