Switch to: References

Add citations

You must login to add citations.
  1. Bertrand’s Paradox and the Principle of Indifference.Nicholas Shackel - 2023 - Abingdon: Routledge.
    Events between which we have no epistemic reason to discriminate have equal epistemic probabilities. Bertrand’s chord paradox, however, appears to show this to be false, and thereby poses a general threat to probabilities for continuum sized state spaces. Articulating the nature of such spaces involves some deep mathematics and that is perhaps why the recent literature on Bertrand’s Paradox has been almost entirely from mathematicians and physicists, who have often deployed elegant mathematics of considerable sophistication. At the same time, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Single-tape and multi-tape Turing machines through the lens of the Grossone methodology.Yaroslav Sergeyev & Alfredo Garro - 2013 - Journal of Supercomputing 65 (2):645-663.
    The paper investigates how the mathematical languages used to describe and to observe automatic computations influence the accuracy of the obtained results. In particular, we focus our attention on Single and Multi-tape Turing machines which are described and observed through the lens of a new mathematical language which is strongly based on three methodological ideas borrowed from Physics and applied to Mathematics, namely: the distinction between the object (we speak here about a mathematical object) of an observation and the instrument (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Study of Mathematical Determination through Bertrand’s Paradox.Davide Rizza - 2018 - Philosophia Mathematica 26 (3):375-395.
    Certain mathematical problems prove very hard to solve because some of their intuitive features have not been assimilated or cannot be assimilated by the available mathematical resources. This state of affairs triggers an interesting dynamic whereby the introduction of novel conceptual resources converts the intuitive features into further mathematical determinations in light of which a solution to the original problem is made accessible. I illustrate this phenomenon through a study of Bertrand’s paradox.
    Download  
     
    Export citation  
     
    Bookmark   3 citations