Switch to: References

Add citations

You must login to add citations.
  1. Mass problems and density.Stephen Binns, Richard A. Shore & Stephen G. Simpson - 2016 - Journal of Mathematical Logic 16 (2):1650006.
    Recall that [Formula: see text] is the lattice of Muchnik degrees of nonempty effectively compact sets in Euclidean space. We solve a long-standing open problem by proving that [Formula: see text] is dense, i.e. satisfies [Formula: see text]. Our proof combines an oracle construction with hyperarithmetical theory.
    Download  
     
    Export citation  
     
    Bookmark  
  • A survey of Mučnik and Medvedev degrees.Peter G. Hinman - 2012 - Bulletin of Symbolic Logic 18 (2):161-229.
    We survey the theory of Mucnik and Medvedev degrees of subsets of $^{\omega}{\omega}$with particular attention to the degrees of $\Pi_{1}^{0}$ subsets of $^{\omega}2$. Sections 1-6 present the major definitions and results in a uniform notation. Sections 7-6 present proofs, some more complete than others, of the major results of the subject together with much of the required background material.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Inside the Muchnik degrees II: The degree structures induced by the arithmetical hierarchy of countably continuous functions.K. Higuchi & T. Kihara - 2014 - Annals of Pure and Applied Logic 165 (6):1201-1241.
    It is known that infinitely many Medvedev degrees exist inside the Muchnik degree of any nontrivial Π10 subset of Cantor space. We shed light on the fine structures inside these Muchnik degrees related to learnability and piecewise computability. As for nonempty Π10 subsets of Cantor space, we show the existence of a finite-Δ20-piecewise degree containing infinitely many finite-2-piecewise degrees, and a finite-2-piecewise degree containing infinitely many finite-Δ20-piecewise degrees 2 denotes the difference of two Πn0 sets), whereas the greatest degrees in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Coding true arithmetic in the Medvedev degrees of classes.Paul Shafer - 2012 - Annals of Pure and Applied Logic 163 (3):321-337.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Inside the Muchnik degrees I: Discontinuity, learnability and constructivism.K. Higuchi & T. Kihara - 2014 - Annals of Pure and Applied Logic 165 (5):1058-1114.
    Every computable function has to be continuous. To develop computability theory of discontinuous functions, we study low levels of the arithmetical hierarchy of nonuniformly computable functions on Baire space. First, we classify nonuniformly computable functions on Baire space from the viewpoint of learning theory and piecewise computability. For instance, we show that mind-change-bounded learnability is equivalent to finite View the MathML source2-piecewise computability 2 denotes the difference of two View the MathML sourceΠ10 sets), error-bounded learnability is equivalent to finite View (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations