Switch to: References

Citations of:

Construction and Reductio Proof

Kant Studien 90 (1):23-39 (1998)

Add citations

You must login to add citations.
  1. The role of diagrams in mathematical arguments.David Sherry - 2008 - Foundations of Science 14 (1-2):59-74.
    Recent accounts of the role of diagrams in mathematical reasoning take a Platonic line, according to which the proof depends on the similarity between the perceived shape of the diagram and the shape of the abstract object. This approach is unable to explain proofs which share the same diagram in spite of drawing conclusions about different figures. Saccheri’s use of the bi-rectangular isosceles quadrilateral in Euclides Vindicatus provides three such proofs. By forsaking abstract objects it is possible to give a (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Conflicting Conceptions of Construction in Kant’s Philosophy of Geometry.William Goodwin - 2018 - Perspectives on Science 26 (1):97-118.
    The notion of the "construction" or "exhibition" of a concept in intuition is central to Kant's philosophical account of geometry. Kant invokes this notion in all of his major Critical Era discussions of mathematics. The most extended discussion of mathematics, and geometry more specifically, occurs in "The Discipline of Pure Reason in its Dogmatic Employment." In this later section of the Critique, Kant makes it clear that construction-in-intuition is central to his philosophy of mathematics by presenting it as the defining (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Impossible Biangle and the Possibility of Geometry.Jeffrey L. Wilson - 2024 - Kant Yearbook 16 (1):121-143.
    Kant repeatedly uses the biangle as an example of an impossible figure. In this paper, I offer an account of these passages and their significance for the possibility of geometry as a science. According to Kant, the constructibility of the biangle would signal the failure of geometry. Whereas Wolff derives the no-biangle proposition from the axiom that between two points there can be only one straight line, Kant gives it axiomatic status as a synthetic a priori principle possessing immediate certainty. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Kant-Bibliographie 1999.M. Ruffing - 2001 - Kant Studien 92 (4):474-517.
    Download  
     
    Export citation  
     
    Bookmark   1 citation