Switch to: References

Add citations

You must login to add citations.
  1. Almost free groups and Ehrenfeucht–Fraı̈ssé games for successors of singular cardinals.Saharon Shelah & Pauli Väisänen - 2002 - Annals of Pure and Applied Logic 118 (1-2):147-173.
    We strengthen nonstructure theorems for almost free Abelian groups by studying long Ehrenfeucht–Fraı̈ssé games between a fixed group of cardinality λ and a free Abelian group. A group is called ε -game-free if the isomorphism player has a winning strategy in the game of length ε ∈ λ . We prove for a large set of successor cardinals λ = μ + the existence of nonfree -game-free groups of cardinality λ . We concentrate on successors of singular cardinals.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Almost free groups and long Ehrenfeucht–Fraı̈ssé games.Pauli Väisänen - 2003 - Annals of Pure and Applied Logic 123 (1-3):101-134.
    An Abelian group G is strongly λ -free iff G is L ∞, λ -equivalent to a free Abelian group iff the isomorphism player has a winning strategy in an Ehrenfeucht–Fraı̈ssé game of length ω between G and a free Abelian group. We study possible longer Ehrenfeucht–Fraı̈ssé games between a nonfree group and a free Abelian group. A group G is called ε -game-free if the isomorphism player has a winning strategy in an Ehrenfeucht–Fraı̈ssé game of length ε between G (...)
    Download  
     
    Export citation  
     
    Bookmark