Switch to: References

Add citations

You must login to add citations.
  1. External automorphisms of ultraproducts of finite models.Philipp Lücke & Saharon Shelah - 2012 - Archive for Mathematical Logic 51 (3-4):433-441.
    Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{L}}$$\end{document} be a finite first-order language and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\langle{\fancyscript{M}_n} \,|\, {n < \omega}\rangle}$$\end{document} be a sequence of finite \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\fancyscript{L}}$$\end{document}-models containing models of arbitrarily large finite cardinality. If the intersection of less than continuum-many dense open subsets of Cantor Space ω2 is non-empty, then there is a non-principal ultrafilter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Strong compactness and other cardinal sins.Jussi Ketonen - 1972 - Annals of Mathematical Logic 5 (1):47.
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Possible size of an ultrapower of $\omega$.Renling Jin & Saharon Shelah - 1999 - Archive for Mathematical Logic 38 (1):61-77.
    Let $\omega$ be the first infinite ordinal (or the set of all natural numbers) with the usual order $<$ . In § 1 we show that, assuming the consistency of a supercompact cardinal, there may exist an ultrapower of $\omega$ , whose cardinality is (1) a singular strong limit cardinal, (2) a strongly inaccessible cardinal. This answers two questions in [1], modulo the assumption of supercompactness. In § 2 we construct several $\lambda$ -Archimedean ultrapowers of $\omega$ under some large cardinal (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Contributions to the Theory of Semisets IV.Petr Štêpánek - 1974 - Mathematical Logic Quarterly 20 (23-24):373-384.
    Download  
     
    Export citation  
     
    Bookmark