Switch to: References

Add citations

You must login to add citations.
  1. Approachable free subsets and fine structure derived scales.Dominik Adolf & Omer Ben-Neria - 2024 - Annals of Pure and Applied Logic 175 (7):103428.
    Download  
     
    Export citation  
     
    Bookmark  
  • More on the Revised GCH and the Black Box.Saharon Shelah - 2006 - Annals of Pure and Applied Logic 140 (1):133-160.
    We strengthen the revised GCH theorem by showing, e.g., that for , for all but finitely many regular κ ω implies that the diamond holds on λ when restricted to cofinality κ for all but finitely many .We strengthen previous results on the black box and the middle diamond: previously it was established that these principles hold on for sufficiently large n; here we succeed in replacing a sufficiently large n with a sufficiently large n.The main theorem, concerning the accessibility (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Applications of Pcf Theory to the Study of Ideals On.Pierre Matet - 2022 - Journal of Symbolic Logic 87 (3):967-994.
    Let$\kappa $be a regular uncountable cardinal, anda cardinal greater than or equal to$\kappa $. Revisiting a celebrated result of Shelah, we show that ifis close to$\kappa $and(= the least size of a cofinal subset of) is greater than, thencan be represented (in the sense of pcf theory) as a pseudopower. This can be used to obtain optimal results concerning the splitting problem. For example we show that ifand, then no$\kappa $-complete ideal onis weakly-saturated.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The PCF Conjecture and Large Cardinals.Luís Pereira - 2008 - Journal of Symbolic Logic 73 (2):674 - 688.
    We prove that a combinatorial consequence of the negation of the PCF conjecture for intervals, involving free subsets relative to set mappings, is not implied by even the strongest known large cardinal axiom.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Representability and compactness for pseudopowers.Todd Eisworth - 2021 - Archive for Mathematical Logic 61 (1):55-80.
    We prove a compactness theorem for pseudopower operations of the form \}\) where \\le {{\,\mathrm{cf}\,}}\). Our main tool is a result that has Shelah’s cov versus pp Theorem as a consequence. We also show that the failure of compactness in other situations has significant consequences for pcf theory, in particular, implying the existence of a progressive set A of regular cardinals for which \\) has an inaccessible accumulation point.
    Download  
     
    Export citation  
     
    Bookmark   1 citation