Switch to: References

Add citations

You must login to add citations.
  1. On the homogeneity property for certain quantifier logics.Heike Mildenberger - 1992 - Archive for Mathematical Logic 31 (6):445-455.
    The local homogeneity property is defined as in [Mak]. We show thatL ωω(Q1) and some related logics do not have the local homogeneity property, whereas cofinality logicL ωω(Q cfω) has the homogeneity property. Both proofs use forcing and absoluteness arguments.
    Download  
     
    Export citation  
     
    Bookmark  
  • Definability properties and the congruence closure.Xavier Caicedo - 1990 - Archive for Mathematical Logic 30 (4):231-240.
    We introduce a natural class of quantifiersTh containing all monadic type quantifiers, all quantifiers for linear orders, quantifiers for isomorphism, Ramsey type quantifiers, and plenty more, showing that no sublogic ofL ωω (Th) or countably compact regular sublogic ofL ∞ω (Th), properly extendingL ωω , satisfies the uniform reduction property for quotients. As a consequence, none of these logics satisfies eitherΔ-interpolation or Beth's definability theorem when closed under relativizations. We also show the failure of both properties for any sublogic ofL (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Definability and automorphisms in abstract logics.Xavier Caicedo - 2004 - Archive for Mathematical Logic 43 (8):937-945.
    In any model theoretic logic, Beth’s definability property together with Feferman-Vaught’s uniform reduction property for pairs imply recursive compactness, and the existence of models with infinitely many automorphisms for sentences having infinite models. The stronger Craig’s interpolation property plus the uniform reduction property for pairs yield a recursive version of Ehrenfeucht-Mostowski’s theorem. Adding compactness, we obtain the full version of this theorem. Various combinations of definability and uniform reduction relative to other logics yield corresponding results on the existence of non-rigid (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Model theory without choice? Categoricity.Saharon Shelan - 2009 - Journal of Symbolic Logic 74 (2):361-401.
    We prove Łos conjecture = Morley theorem in ZF, with the same characterization, i.e., of first order countable theories categorical in $N_\alpha $ for some (equivalently for every ordinal) α > 0. Another central result here in this context is: the number of models of a countable first order T of cardinality $N_\alpha $ is either ≥ |α| for every α or it has a small upper bound (independent of α close to Ð₂).
    Download  
     
    Export citation  
     
    Bookmark  
  • Harmonious logic: Craig’s interpolation theorem and its descendants.Solomon Feferman - 2008 - Synthese 164 (3):341-357.
    Though deceptively simple and plausible on the face of it, Craig's interpolation theorem has proved to be a central logical property that has been used to reveal a deep harmony between the syntax and semantics of first order logic. Craig's theorem was generalized soon after by Lyndon, with application to the characterization of first order properties preserved under homomorphism. After retracing the early history, this article is mainly devoted to a survey of subsequent generalizations and applications, especially of many-sorted interpolation (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Barwise: Abstract model theory and generalized quantifiers.Jouko Väänänen - 2004 - Bulletin of Symbolic Logic 10 (1):37-53.
    §1. Introduction. After the pioneering work of Mostowski [29] and Lindström [23] it was Jon Barwise's papers [2] and [3] that brought abstract model theory and generalized quantifiers to the attention of logicians in the early seventies. These papers were greeted with enthusiasm at the prospect that model theory could be developed by introducing a multitude of extensions of first order logic, and by proving abstract results about relationships holding between properties of these logics. Examples of such properties areκ-compactness.Any set (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • There are reasonably nice logics.Wilfrid Hodges & Saharon Shelah - 1991 - Journal of Symbolic Logic 56 (1):300-322.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Craig Interpolation Theorem in abstract model theory.Jouko Väänänen - 2008 - Synthese 164 (3):401-420.
    The Craig Interpolation Theorem is intimately connected with the emergence of abstract logic and continues to be the driving force of the field. I will argue in this paper that the interpolation property is an important litmus test in abstract model theory for identifying “natural,” robust extensions of first order logic. My argument is supported by the observation that logics which satisfy the interpolation property usually also satisfy a Lindström type maximality theorem. Admittedly, the range of such logics is small.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Barwise: Abstract Model Theory and Generalized Quantifiers.Jouko Va An Anen - 2004 - Bulletin of Symbolic Logic 10 (1):37-53.
    §1. Introduction. After the pioneering work of Mostowski [29] and Lindström [23] it was Jon Barwise's papers [2] and [3] that brought abstract model theory and generalized quantifiers to the attention of logicians in the early seventies. These papers were greeted with enthusiasm at the prospect that model theory could be developed by introducing a multitude of extensions of first order logic, and by proving abstract results about relationships holding between properties of these logics. Examples of such properties areκ-compactness.Any set (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations