Switch to: References

Add citations

You must login to add citations.
  1. Zf + dc + ax4.Saharon Shelah - 2016 - Archive for Mathematical Logic 55 (1-2):239-294.
    We consider mainly the following version of set theory: “ZF+DC and for every λ,λℵ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda, \lambda^{\aleph_0}}$$\end{document} is well ordered”, our thesis is that this is a reasonable set theory, e.g. on the one hand it is much weaker than full choice, and on the other hand much can be said or at least this is what the present work tries to indicate. In particular, we prove that for a sequence δ¯=⟨δs:s∈Y⟩,cf\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Pcf without choice Sh835.Saharon Shelah - 2024 - Archive for Mathematical Logic 63 (5):623-654.
    We mainly investigate models of set theory with restricted choice, e.g., ZF + DC + the family of countable subsets of $$\lambda $$ is well ordered for every $$\lambda $$ (really local version for a given $$\lambda $$ ). We think that in this frame much of pcf theory, (and combinatorial set theory in general) can be generalized. We prove here, in particular, that there is a proper class of regular cardinals, every large enough successor of singular is not measurable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Model theory without choice? Categoricity.Saharon Shelan - 2009 - Journal of Symbolic Logic 74 (2):361-401.
    We prove Łos conjecture = Morley theorem in ZF, with the same characterization, i.e., of first order countable theories categorical in $N_\alpha $ for some (equivalently for every ordinal) α > 0. Another central result here in this context is: the number of models of a countable first order T of cardinality $N_\alpha $ is either ≥ |α| for every α or it has a small upper bound (independent of α close to Ð₂).
    Download  
     
    Export citation  
     
    Bookmark  
  • More on the Revised GCH and the Black Box.Saharon Shelah - 2006 - Annals of Pure and Applied Logic 140 (1):133-160.
    We strengthen the revised GCH theorem by showing, e.g., that for , for all but finitely many regular κ ω implies that the diamond holds on λ when restricted to cofinality κ for all but finitely many .We strengthen previous results on the black box and the middle diamond: previously it was established that these principles hold on for sufficiently large n; here we succeed in replacing a sufficiently large n with a sufficiently large n.The main theorem, concerning the accessibility (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Applications of PCF theory.Saharon Shelah - 2000 - Journal of Symbolic Logic 65 (4):1624-1674.
    We deal with several pcf problems: we characterize another version of exponentiation: maximal number of κ-branches in a tree with λ nodes, deal with existence of independent sets in stable theories, possible cardinalities of ultraproducts and the depth of ultraproducts of Boolean Algebras. Also we give cardinal invariants for each λ with a pcf restriction and investigate further T D (f). The sections can be read independently, although there are some minor dependencies.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • On the consistency strength of critical leaps.Gunter Fuchs - forthcoming - Archive for Mathematical Logic:1-14.
    In the analysis of the blurry $$\textsf{HOD}$$ hierarchy, one of the fundamental concepts is that of a leap, and it turned out that critical leaps are of particular interest. A critical leap is a leap which is the cardinal successor of a singular strong limit cardinal. Such a leap is sudden if its cardinal predecessor is not a leap, and otherwise, it is smooth. In prior work, I showed that the existence of a sudden critical leap is equiconsistent with the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Controlling the number of normal measures at successor cardinals.Arthur W. Apter - 2022 - Mathematical Logic Quarterly 68 (3):304-309.
    We examine the number of normal measures a successor cardinal can carry, in universes in which the Axiom of Choice is false. When considering successors of singular cardinals, we establish relative consistency results assuming instances of supercompactness, together with the Ultrapower Axiom (introduced by Goldberg in [12]). When considering successors of regular cardinals, we establish relative consistency results only assuming the existence of one measurable cardinal. This allows for equiconsistencies.
    Download  
     
    Export citation  
     
    Bookmark