Switch to: References

Add citations

You must login to add citations.
  1. Minimal α-degrees.Richard A. Shore - 1972 - Annals of Mathematical Logic 4 (4):393-414.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Degrees of unsolvability complementary between recursively enumerable degrees, Part I.S. B. Cooper - 1972 - Annals of Mathematical Logic 4 (1):31.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Complementing below recursively enumerable degrees.S. Barry Cooper & Richard L. Epstein - 1987 - Annals of Pure and Applied Logic 34 (1):15-32.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Generic degrees are complemented.Masahiro Kumabe - 1993 - Annals of Pure and Applied Logic 59 (3):257-272.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Conjectures and questions from Gerald Sacks's Degrees of Unsolvability.Richard A. Shore - 1997 - Archive for Mathematical Logic 36 (4-5):233-253.
    We describe the important role that the conjectures and questions posed at the end of the two editions of Gerald Sacks's Degrees of Unsolvability have had in the development of recursion theory over the past thirty years.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The minimal complementation property above 0′.Andrew E. M. Lewis - 2005 - Mathematical Logic Quarterly 51 (5):470-492.
    Let us say that any (Turing) degree d > 0 satisfies the minimal complementation property (MCP) if for every degree 0 < a < d there exists a minimal degree b < d such that a ∨ b = d (and therefore a ∧ b = 0). We show that every degree d ≥ 0′ satisfies MCP. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim).
    Download  
     
    Export citation  
     
    Bookmark  
  • Minimal Degrees in Generalized Recursion Theory.Michael Machtey - 1974 - Mathematical Logic Quarterly 20 (8-12):133-148.
    Download  
     
    Export citation  
     
    Bookmark  
  • ASH, CJ, Categoricity in hyperarithmetical degrees (1) BALDWIN, JT and HARRINGTON, L., Trivial pursuit: Re-marks on the main gap (3) COOPER, SB and EPSTEIN, RL, Complementing below re-cursively enumerable degrees (1). [REVIEW]Rl Epstein - 1987 - Annals of Pure and Applied Logic 34 (1):311.
    Download  
     
    Export citation  
     
    Bookmark