Switch to: References

Add citations

You must login to add citations.
  1. Automorphisms of the lattice of recursively enumerable sets. Part II: Low sets.Robert I. Soare - 1982 - Annals of Mathematical Logic 22 (1):69.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Inside the Muchnik degrees I: Discontinuity, learnability and constructivism.K. Higuchi & T. Kihara - 2014 - Annals of Pure and Applied Logic 165 (5):1058-1114.
    Every computable function has to be continuous. To develop computability theory of discontinuous functions, we study low levels of the arithmetical hierarchy of nonuniformly computable functions on Baire space. First, we classify nonuniformly computable functions on Baire space from the viewpoint of learning theory and piecewise computability. For instance, we show that mind-change-bounded learnability is equivalent to finite View the MathML source2-piecewise computability 2 denotes the difference of two View the MathML sourceΠ10 sets), error-bounded learnability is equivalent to finite View (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Recognizing strong random reals.Daniel Osherson - 2008 - Review of Symbolic Logic 1 (1):56-63.
    1. Characterizing randomness. Consider a physical process that, if suitably idealized, generates an indefinite sequence of independent random bits. One such process might be radioactive decay of a lump of uranium whose mass is kept at just the level needed to ensure that the probability is one-half that no alpha particle is emitted in the nth microsecond of the experiment. Let us think of the bits as drawn from {0, 1} and denote the resulting sequence by x with coordinates x0, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Bounded Jump for the Bounded Turing Degrees.Bernard Anderson & Barbara Csima - 2014 - Notre Dame Journal of Formal Logic 55 (2):245-264.
    We define the bounded jump of $A$ by $A^{b}=\{x\in \omega \mid \exists i\leq x[\varphi_{i}\downarrow \wedge\Phi_{x}^{A\upharpoonright \!\!\!\upharpoonright \varphi_{i}}\downarrow ]\}$ and let $A^{nb}$ denote the $n$th bounded jump. We demonstrate several properties of the bounded jump, including the fact that it is strictly increasing and order-preserving on the bounded Turing degrees. We show that the bounded jump is related to the Ershov hierarchy. Indeed, for $n\geq2$ we have $X\leq_{bT}\emptyset ^{nb}\iff X$ is $\omega^{n}$-c.e. $\iff X\leq_{1}\emptyset ^{nb}$, extending the classical result that $X\leq_{bT}\emptyset '\iff (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The n-r.E. Degrees: Undecidability and σ1 substructures.Mingzhong Cai, Richard A. Shore & Theodore A. Slaman - 2012 - Journal of Mathematical Logic 12 (1):1250005-.
    We study the global properties of [Formula: see text], the Turing degrees of the n-r.e. sets. In Theorem 1.5, we show that the first order of [Formula: see text] is not decidable. In Theorem 1.6, we show that for any two n and m with n < m, [Formula: see text] is not a Σ1-substructure of [Formula: see text].
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Kolmogorov complexity for possibly infinite computations.Verónica Becher & Santiago Figueira - 2005 - Journal of Logic, Language and Information 14 (2):133-148.
    In this paper we study the Kolmogorov complexity for non-effective computations, that is, either halting or non-halting computations on Turing machines. This complexity function is defined as the length of the shortest input that produce a desired output via a possibly non-halting computation. Clearly this function gives a lower bound of the classical Kolmogorov complexity. In particular, if the machine is allowed to overwrite its output, this complexity coincides with the classical Kolmogorov complexity for halting computations relative to the first (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Extending and interpreting Post’s programme.S. Barry Cooper - 2010 - Annals of Pure and Applied Logic 161 (6):775-788.
    Computability theory concerns information with a causal–typically algorithmic–structure. As such, it provides a schematic analysis of many naturally occurring situations. Emil Post was the first to focus on the close relationship between information, coded as real numbers, and its algorithmic infrastructure. Having characterised the close connection between the quantifier type of a real and the Turing jump operation, he looked for more subtle ways in which information entails a particular causal context. Specifically, he wanted to find simple relations on reals (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A non-inversion theorem for the jump operator.Richard A. Shore - 1988 - Annals of Pure and Applied Logic 40 (3):277-303.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Recursion relative to regressive functions.J. C. E. Dekker & E. Ellentuck - 1974 - Annals of Mathematical Logic 6 (3-4):231-257.
    Download  
     
    Export citation  
     
    Bookmark   5 citations