Switch to: References

Add citations

You must login to add citations.
  1. The elementary computable functions over the real numbers: applying two new techniques. [REVIEW]Manuel L. Campagnolo & Kerry Ojakian - 2008 - Archive for Mathematical Logic 46 (7-8):593-627.
    The basic motivation behind this work is to tie together various computational complexity classes, whether over different domains such as the naturals or the reals, or whether defined in different manners, via function algebras (Real Recursive Functions) or via Turing Machines (Computable Analysis). We provide general tools for investigating these issues, using two techniques we call approximation and lifting. We use these methods to obtain two main theorems. First, we provide an alternative proof of the result from Campagnolo et al. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • How to Make a Meaningful Comparison of Models: The Church–Turing Thesis Over the Reals.Maël Pégny - 2016 - Minds and Machines 26 (4):359-388.
    It is commonly believed that there is no equivalent of the Church–Turing thesis for computation over the reals. In particular, computational models on this domain do not exhibit the convergence of formalisms that supports this thesis in the case of integer computation. In the light of recent philosophical developments on the different meanings of the Church–Turing thesis, and recent technical results on analog computation, I will show that this current belief confounds two distinct issues, namely the extension of the notion (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations