Switch to: References

Add citations

You must login to add citations.
  1. Avoiding bad genes: oxidatively damaged DNA in germ line and mate choice.Alberto Velando, Roxana Torres & Carlos Alonso-Alvarez - 2008 - Bioessays 30 (11-12):1212-1219.
    August Weismann proposed that genetic changes in somatic cells cannot pass to germ cells and hence to next generations. Nevertheless, evidence is accumulating that some environmental effects can promote heritable changes in the DNA of germ cells, which implies that some somatic influence on germ line is possible. This influence is mostly detrimental and related to the presence of oxidative stress, which induces mutations and epigenetic changes. This effect should be stronger in males due to the particular characteristics of sperm. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Glial cell development in the Drosophila embryo.Bradley W. Jones - 2001 - Bioessays 23 (10):877-887.
    Glial cells play a central role in the development and function of complex nervous systems. Drosophila is an excellent model organism for the study of mechanisms underlying neural development, and recent attention has been focused on the differentiation and function of glial cells. We now have a nearly complete description of glial cell organization in the embryo, which enables a systematic genetic analysis of glial cell development. Most glia arise from neural stem cells that originate in the neurogenic ectoderm. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Cupiennius salei and Achaearanea tepidariorum: Spider models for investigating evolution and development.Alistair P. McGregor, Maarten Hilbrant, Matthias Pechmann, Evelyn E. Schwager, Nikola-Michael Prpic & Wim G. M. Damen - 2008 - Bioessays 30 (5):487-498.
    The spiders Cupiennius salei and Achaearanea tepidariorum are firmly established laboratory models that have already contributed greatly to answering evolutionary developmental questions. Here we appraise why these animals are such useful models from phylogeny, natural history and embryogenesis to the tools available for their manipulation. We then review recent studies of axis formation, segmentation, appendage development and neurogenesis in these spiders and how this has contributed to understanding the evolution of these processes. Furthermore, we discuss the potential of comparisons of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Evolution of early development of the nervous system: a comparison between arthropods.Angelika Stollewerk & Pat Simpson - 2005 - Bioessays 27 (9):874-883.
    Large numbers of cells with unique neuronal specificity are generated during development of the central nervous system of animals. Here we discuss the events that generate cell diversity during early development of the ventral nerve cord of different arthropod groups. Neural precursors are generated in a spatial array in the epithelium of each hemisegment over a period of time. Spatial cues within the epithelium are thought to evolve as embryogenesis proceeds. This spatiotemporal information might generate diversity among the neural precursors (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Neuroblast formation and patterning during early brain development in Drosophila.Rolf Urbach & Gerhard M. Technau - 2004 - Bioessays 26 (7):739-751.
    The Drosophila embryo provides a useful model system to study the mechanisms that lead to pattern and cell diversity in the central nervous system (CNS). The Drosophila CNS, which encompasses the brain and the ventral nerve cord, develops from a bilaterally symmetrical neuroectoderm, which gives rise to neural stem cells, called neuroblasts. The structure of the embryonic ventral nerve cord is relatively simple, consisting of a sequence of repeated segmental units (neuromeres), and the mechanisms controlling the formation and specification of (...)
    Download  
     
    Export citation  
     
    Bookmark