Switch to: References

Add citations

You must login to add citations.
  1. Parsimony and the Fisher–Wright debate.Anya Plutynski - 2005 - Biology and Philosophy 20 (4):697-713.
    In the past five years, there have been a series of papers in the journal Evolution debating the relative significance of two theories of evolution, a neo-Fisherian and a neo-Wrightian theory, where the neo-Fisherians make explicit appeal to parsimony. My aim in this paper is to determine how we can make sense of such an appeal. One interpretation of parsimony takes it that a theory that contains fewer entities or processes, (however we demarcate these) is more parsimonious. On the account (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Pluralism in evolutionary controversies: styles and averaging strategies in hierarchical selection theories.Rasmus Grønfeldt Winther, Michael J. Wade & Christopher C. Dimond - 2013 - Biology and Philosophy 28 (6):957-979.
    Two controversies exist regarding the appropriate characterization of hierarchical and adaptive evolution in natural populations. In biology, there is the Wright-Fisher controversy over the relative roles of random genetic drift, natural selection, population structure, and interdemic selection in adaptive evolution begun by Sewall Wright and Ronald Aylmer Fisher. There is also the Units of Selection debate, spanning both the biological and the philosophical literature and including the impassioned group-selection debate. Why do these two discourses exist separately, and interact relatively little? (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Hsp90-induced evolution: Adaptationist, neutralist, and developmentalist scenarios.Roberta L. Millstein - 2007 - Biological Theory: Integrating Development, Evolution and Cognition 2 (4):376-386.
    Recent work on the heat-shock protein Hsp90 by Rutherford and Lindquist (1998) has been included among the pieces of evidence taken to show the essential role of developmental processes in evolution; Hsp90 acts as a buffer against phenotypic variation, allowing genotypic variation to build. When the buffering capacity of Hsp90 is altered (e.g., in nature, by mutation or environmental stress), the genetic variation is "revealed," manifesting itself as phenotypic variation. This phenomenon raises questions about the genetic variation before and after (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Distinguishing Drift and Selection Empirically: "The Great Snail Debate" of the 1950s.Roberta L. Millstein - 2007 - Journal of the History of Biology 41 (2):339-367.
    Biologists and philosophers have been extremely pessimistic about the possibility of demonstrating random drift in nature, particularly when it comes to distinguishing random drift from natural selection. However, examination of a historical case-Maxime Lamotte's study of natural populations of the land snail, Cepaea nemoralis in the 1950s - shows that while some pessimism is warranted, it has been overstated. Indeed, by describing a unique signature for drift and showing that this signature obtained in the populations under study, Lamotte was able (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Explanatory unification and the early synthesis.Anya Plutynski - 2005 - British Journal for the Philosophy of Science 56 (3):595-609.
    The object of this paper is to reply to Morrison's ([2000]) claim that while ‘structural unity’ was achieved at the level of the mathematical models of population genetics in the early synthesis, there was explanatory disunity. I argue to the contrary, that the early synthesis effected by the founders of theoretical population genetics was unifying and explanatory both. Defending this requires a reconsideration of Morrison's notion of explanation. In Morrison's view, all and only answers to ‘why’ questions which include the (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The dimensions, modes and definitions of species and speciation.John Wilkins - 2007 - Biology and Philosophy 22 (2):247-266.
    Speciation is an aspect of evolutionary biology that has received little philosophical attention apart from articles mainly by biologists such as Mayr (1988). The role of speciation as a terminus a quo for the individuality of species or in the context of punctuated equilibrium theory has been discussed, but not the nature of speciation events themselves. It is the task of this paper to attempt to bring speciation events into some kind of general scheme, based primarily upon the work of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Genetic variance–covariance matrices: A critique of the evolutionary quantitative genetics research program.Massimo Pigliucci - 2006 - Biology and Philosophy 21 (1):1-23.
    This paper outlines a critique of the use of the genetic variance–covariance matrix (G), one of the central concepts in the modern study of natural selection and evolution. Specifically, I argue that for both conceptual and empirical reasons, studies of G cannot be used to elucidate so-called constraints on natural selection, nor can they be employed to detect or to measure past selection in natural populations – contrary to what assumed by most practicing biologists. I suggest that the search for (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Adaptive speciation: The role of natural selection in mechanisms of geographic and non-geographic speciation.Jason M. Byron - 2005 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 36 (2):303-326.
    Recent discussion of mechanism has suggested new approaches to several issues in the philosophy of science, including theory structure, causal explanation, and reductionism. Here, I apply what I take to be the fruits of the 'new mechanical philosophy' to an analysis of a contemporary debate in evolutionary biology about the role of natural selection in speciation. Traditional accounts of that debate focus on the geographic context of genetic divergence--namely, whether divergence in the absence of geographic isolation is possible (or significant). (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Driftability and niche construction.Alejandro Fábregas-Tejeda & Grant Ramsey - 2024 - Synthese 204 (6):1-22.
    Niche construction is the process of organisms changing themselves or their environment—or their relationship with their environment—in ways that affect the evolutionary trajectory of their population. These evolutionary trajectory changes are traditionally understood to be triggered by changes in selection pressures. Niche construction thus necessarily involves organisms altering selection pressures. In this paper, we argue that changes in selection pressures is not the only way organisms can influence the evolutionary futures of their population. We propose that organisms can also affect (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Empirical adaptationism revisited: is it testable and is it worth testing?Mingjun Zhang - 2022 - Biology and Philosophy 37 (6):1-23.
    Empirical adaptationism is often said to be an empirical claim about nature, which concerns the overall relative causal importance of natural selection in evolution compared with other evolutionary factors. Philosophers and biologists who have tried to clarify the meaning of empirical adaptationism usually share, explicitly or implicitly, two assumptions: (1) Empirical adaptationism is an empirical claim that is scientifically testable; (2) testing empirical adaptationism is scientifically valuable. In this article, I challenge these two assumptions and argue that both are unwarranted (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Adaptive speciation: the role of natural selection in mechanisms of geographic and non-geographic speciation.Jason M. Baker - 2005 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 36 (2):303-326.
    Recent discussion of mechanism has suggested new approaches to several issues in the philosophy of science, including theory structure, causal explanation, and reductionism. Here, I apply what I take to be the fruits of the Ônew mechanical philosophyÕ to an analysis of a contemporary debate in evolutionary biology about the role of natural selection in speciation. Traditional accounts of that debate focus on the geographic context of genetic divergence— namely, whether divergence in the absence of geographic isolation is possible (or (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • R. A. Fisher, Lancelot Hogben, and the Origin of Genotype–Environment Interaction.James Tabery - 2008 - Journal of the History of Biology 41 (4):717-761.
    This essay examines the origin of genotype-environment interaction, or G×E. "Origin" and not "the origin" because the thesis is that there were actually two distinct concepts of G×E at this beginning: a biometric concept, or \[G \times E_B\], and a developmental concept, or \[G \times E_D \]. R. A. Fisher, one of the founders of population genetics and the creator of the statistical analysis of variance, introduced the biometric concept as he attempted to resolve one of the main problems in (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Neo-Darwinism and Evo-Devo: An Argument for Theoretical Pluralism in Evolutionary Biology.Lindsay R. Craig - 2015 - Perspectives on Science 23 (3):243-279.
    The relatively new field of evolutionary developmental biology continues to attract considerable attention from biologists, philosophers, and historians, in part, because work in this field demonstrates that important changes are underway within biology. Though studies of development and evolution were closely connected during the 19th century, continued work in genetics fostered a general split between the two during the first decades of the twentieth century (e.g., Allen 1978; Gilbert 1978; Mayr and Provine 1980; Gilbert, Opitz and..
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (Mis)interpreting Mathematical Models: Drift as a Physical Process.Michael R. Dietrich, Robert A. Skipper Jr & Roberta L. Millstein - 2009 - Philosophy, Theory, and Practice in Biology 1 (20130604):e002.
    Recently, a number of philosophers of biology have endorsed views about random drift that, we will argue, rest on an implicit assumption that the meaning of concepts such as drift can be understood through an examination of the mathematical models in which drift appears. They also seem to implicitly assume that ontological questions about the causality of terms appearing in the models can be gleaned from the models alone. We will question these general assumptions by showing how the same equation (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Concepts of drift and selection in “the great snail debate” of the 1950s and early 1960s.Roberta L. Millstein - 2009 - In Joe Cain Michael Ruse (ed.), Descended from Darwin: Insights into the History of Evolutionary Studies, 1900-1970. American Philosophical Society.
    Recently, much philosophical discussion has centered on the best way to characterize the concepts of random drift and natural selection, and, in particular, whether selection and drift can be conceptually distinguished (Beatty, 1984; Brandon, 2005; Hodge, 1983, 1987; Millstein, 2002, 2005; Pfeifer, 2005; Shanahan, 1992; Stephens, 2004). These authors all contend, to a greater or lesser degree, that their concepts make sense of biological practice. So it should be instructive to see how the concepts of drift and selection were distinguished (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Fighting about frequency.Karen Kovaka - 2021 - Synthese 199 (3-4):7777-7797.
    Scientific disputes about how often different processes or patterns occur are relative frequency controversies. These controversies occur across the sciences. In some areas—especially biology—they are even the dominant mode of dispute. Yet they depart from the standard picture of what a scientific controversy is like. In fact, standard philosophical accounts of scientific controversies suggest that relative frequency controversies are irrational or lacking in epistemic value. This is because standard philosophical accounts of scientific controversies often assume that in order to be (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The origins of the stochastic theory of population genetics: The Wright-Fisher model.Yoichi Ishida & Alirio Rosales - 2020 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 79 (C):101226.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Sewall Wright, shifting balance theory, and the hardening of the modern synthesis.Yoichi Ishida - 2017 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 61:1-10.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Confirmation and explaining how possible.Patrick Forber - 2010 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 41 (1):32-40.
    Confirmation in evolutionary biology depends on what biologists take to be the genuine rivals. Investigating what constrains the scope of biological possibility provides part of the story: explaining how possible helps determine what counts as a genuine rival and thus informs confirmation. To clarify the criteria for genuine rivalry I distinguish between global and local constraints on biological possibility, and offer an account of how-possibly explanation. To sharpen the connection between confirmation and explaining how possible I discuss the view that (...)
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Population genetics.Roberta L. Millstein & Robert A. Skipper - 2007 - In David L. Hull & Michael Ruse (eds.), The Cambridge Companion to the Philosophy of Biology. New York: Cambridge University Press.
    Population genetics attempts to measure the influence of the causes of evolution, viz., mutation, migration, natural selection, and random genetic drift, by understanding the way those causes change the genetics of populations. But how does it accomplish this goal? After a short introduction, we begin in section (2) with a brief historical outline of the origins of population genetics. In section (3), we sketch the model theoretic structure of population genetics, providing the flavor of the ways in which population genetics (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Theories that narrate the world: Ronald A. Fisher's mass selection and Sewall Wright's shifting balance.Alirio Rosales - 2017 - Studies in History and Philosophy of Science Part A 62:22-30.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Current Bibliography of the History of Science and Its Cultural Influences 2002.Stephen P. Weldon - 2002 - Isis 93:1-237.
    Download  
     
    Export citation  
     
    Bookmark  
  • A revival of the landscape paradigm: Large scale data harvesting provides access to fitness landscapes.Peter Schuster - 2012 - Complexity 17 (5):6-10.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Manipulating underdetermination in scientific controversy: The case of the molecular clock.Michael R. Dietrich & Robert A. Skipper - 2007 - Perspectives on Science 15 (3):295-326.
    : Where there are cases of underdetermination in scientific controversies, such as the case of the molecular clock, scientists may direct the course and terms of dispute by playing off the multidimensional framework of theory evaluation. This is because assessment strategies themselves are underdetermined. Within the framework of assessment, there are a variety of trade-offs between different strategies as well as shifting emphases as specific strategies are given more or less weight in assessment situations. When a strategy is underdetermined, scientists (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Calibration of laboratory models in population genetics.Robert A. Skipper - 2004 - Perspectives on Science 12 (4):369-393.
    : This paper explores the calibration of laboratory models in population genetics as an experimental strategy for justifying experimental results and claims based upon them following Franklin (1986, 1990) and Rudge (1996, 1998). The analysis provided undermines Coyne et al.'s (1997) critique of Wade and Goodnight's (1991) experimental study of Wright's (1931, 1932) Shifting Balance Theory. The essay concludes by further demonstrating how this analysis bears on Diamond's (1986) claims regarding the weakness of laboratory experiments as evidence, and further how (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The dilemma of dominance.Douglas Allchin - 2005 - Biology and Philosophy 20 (2-3):427-451.
    The concept of dominance poses several dilemmas. First, while entrenched in genetics education, the metaphor of dominance promotes several misconceptions and misleading cultural perspectives. Second, the metaphors of power, prevalence and competition extend into science, shaping assumptions and default concepts. Third, because genetic causality is complex, the simplified concepts of dominance found in practice are highly contingent or inconsistent. The conceptual problems are illustrated in the history of studies on the evolution of dominance. Conceptual clarity may be fostered, I claim, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations