Switch to: References

Add citations

You must login to add citations.
  1. Varieties of truth definitions.Piotr Gruza & Mateusz Łełyk - 2024 - Archive for Mathematical Logic 63 (5):563-589.
    We study the structure of the partial order induced by the definability relation on definitions of truth for the language of arithmetic. Formally, a definition of truth is any sentence $$\alpha $$ which extends a weak arithmetical theory (which we take to be $${{\,\mathrm{I\Delta _{0}+\exp }\,}}$$ ) such that for some formula $$\Theta $$ and any arithmetical sentence $$\varphi $$, $$\Theta (\ulcorner \varphi \urcorner )\equiv \varphi $$ is provable in $$\alpha $$. We say that a sentence $$\beta $$ is definable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Disjunctions with Stopping Conditions.Roman Kossak & Bartosz Wcisło - 2021 - Bulletin of Symbolic Logic 27 (3):231-253.
    We introduce a tool for analysing models of$\text {CT}^-$, the compositional truth theory over Peano Arithmetic. We present a new proof of Lachlan’s theorem that the arithmetical part of models of$\text {CT}^-$are recursively saturated. We also use this tool to provide a new proof of theorem from [8] that all models of$\text {CT}^-$carry a partial inductive truth predicate. Finally, we construct a partial truth predicate defined for a set of formulae whose syntactic depth forms a nonstandard cut which cannot be (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Truth, Pretense and the Liar Paradox.Bradley Armour-Garb & James A. Woodbridge - 2015 - In T. Achourioti, H. Galinon, J. Martínez Fernández & K. Fujimoto (eds.), Unifying the Philosophy of Truth. Dordrecht: Imprint: Springer. pp. 339-354.
    In this paper we explain our pretense account of truth-talk and apply it in a diagnosis and treatment of the Liar Paradox. We begin by assuming that some form of deflationism is the correct approach to the topic of truth. We then briefly motivate the idea that all T-deflationists should endorse a fictionalist view of truth-talk, and, after distinguishing pretense-involving fictionalism (PIF) from error- theoretic fictionalism (ETF), explain the merits of the former over the latter. After presenting the basic framework (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Saturation properties for compositional truth with propositional correctness.Bartosz Wcisło - 2025 - Annals of Pure and Applied Logic 176 (2):103512.
    Download  
     
    Export citation  
     
    Bookmark  
  • Models of weak theories of truth.Mateusz Łełyk & Bartosz Wcisło - 2017 - Archive for Mathematical Logic 56 (5):453-474.
    In the following paper we propose a model-theoretical way of comparing the “strength” of various truth theories which are conservative over $$ PA $$. Let $${\mathfrak {Th}}$$ denote the class of models of $$ PA $$ which admit an expansion to a model of theory $${ Th}$$. We show (combining some well known results and original ideas) that $$\begin{aligned} {{\mathfrak {PA}}}\supset {\mathfrak {TB}}\supset {{\mathfrak {RS}}}\supset {\mathfrak {UTB}}\supseteq \mathfrak {CT^-}, \end{aligned}$$ where $${\mathfrak {PA}}$$ denotes simply the class of all models of (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Local collection and end-extensions of models of compositional truth.Mateusz Łełyk & Bartosz Wcisło - 2021 - Annals of Pure and Applied Logic 172 (6):102941.
    We introduce a principle of local collection for compositional truth predicates and show that it is arithmetically conservative over the classically compositional theory of truth. This axiom states that upon restriction to formulae of any syntactic complexity, the resulting predicate satisfies full collection. In particular, arguments using collection for the truth predicate applied to sentences occurring in any given (code of a) proof do not suffice to show that the conclusion of that proof is true, in stark contrast to the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Neutrally expandable models of arithmetic.Athar Abdul‐Quader & Roman Kossak - 2019 - Mathematical Logic Quarterly 65 (2):212-217.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Condensable models of set theory.Ali Enayat - 2022 - Archive for Mathematical Logic 61 (3):299-315.
    A model \ of ZF is said to be condensable if \\prec _{\mathbb {L}_{{\mathcal {M}}}} {\mathcal {M}}\) for some “ordinal” \, where \:=,\in )^{{\mathcal {M}}}\) and \ is the set of formulae of the infinitary logic \ that appear in the well-founded part of \. The work of Barwise and Schlipf in the 1970s revealed the fact that every countable recursively saturated model of ZF is cofinally condensable \prec _{\mathbb {L}_{{\mathcal {M}}}}{\mathcal {M}}\) for an unbounded collection of \). Moreover, it (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Models of PT- with Internal Induction for Total Formulae.Cezary Cieslinski, Bartosz Wcisło & Mateusz Łełyk - 2017 - Review of Symbolic Logic 10 (1):187-202.
    We show that a typed compositional theory of positive truth with internal induction for total formulae (denoted by PT tot ) is not semantically conservative over Peano arithmetic. In addition, we observe that the class of models of PA expandable to models of PT tot contains every recursively saturated model of arithmetic. Our results point to a gap in the philosophical project of describing the use of the truth predicate in model-theoretic contexts.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • An addition to Rosser's theorem.Henryk Kotlarski - 1996 - Journal of Symbolic Logic 61 (1):285-292.
    For a primitive recursive consistent and strong enough theory T we construct an independent statement which has some clear metamathematical meaning.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Pathologies in satisfaction classes.Athar Abdul-Quader & Mateusz Łełyk - 2024 - Annals of Pure and Applied Logic 175 (2):103387.
    Download  
     
    Export citation  
     
    Bookmark  
  • Model Theory and Proof Theory of the Global Reflection Principle.Mateusz Zbigniew Łełyk - 2023 - Journal of Symbolic Logic 88 (2):738-779.
    The current paper studies the formal properties of the Global Reflection Principle, to wit the assertion “All theorems of$\mathrm {Th}$are true,” where$\mathrm {Th}$is a theory in the language of arithmetic and the truth predicate satisfies the usual Tarskian inductive conditions for formulae in the language of arithmetic. We fix the gap in Kotlarski’s proof from [15], showing that the Global Reflection Principle for Peano Arithmetic is provable in the theory of compositional truth with bounded induction only ($\mathrm {CT}_0$). Furthermore, we (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Full Satisfaction Classes, Definability, and Automorphisms.Bartosz Wcisło - 2022 - Notre Dame Journal of Formal Logic 63 (2):143-163.
    We show that for every countable recursively saturated model M of Peano arithmetic and every subset A⊆M, there exists a full satisfaction class SA⊆M2 such that A is definable in (M,SA) without parameters. It follows that in every such model, there exists a full satisfaction class which makes every element definable, and thus the expanded model is minimal and rigid. On the other hand, as observed by Roman Kossak, for every full satisfaction class S there are two elements which have (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Compositional truth with propositional tautologies and quantifier-free correctness.Bartosz Wcisło - 2023 - Archive for Mathematical Logic 63 (1):239-257.
    In Cieśliński (J Philos Logic 39:325–337, 2010), Cieśliński asked whether compositional truth theory with the additional axiom that all propositional tautologies are true is conservative over Peano Arithmetic. We provide a partial answer to this question, showing that if we additionally assume that truth predicate agrees with arithmetical truth on quantifier-free sentences, the resulting theory is as strong as $$\Delta _0$$ Δ 0 -induction for the compositional truth predicate, hence non-conservative. On the other hand, it can be shown with a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation