Switch to: References

Add citations

You must login to add citations.
  1. Fibrillar collagen: The key to vertebrate evolution? A tale of molecular incest.Raymond P. Boot-Handford & Danny S. Tuckwell - 2003 - Bioessays 25 (2):142-151.
    Fibril‐forming (fibrillar) collagens are extracellular matrix proteins conserved in all multicellular animals. Vertebrate members of the fibrillar collagen family are essential for the formation of bone and teeth, tissues that characterise vertebrates. The potential role played by fibrillar collagens in vertebrate evolution has not been considered previously largely because the family has been around since the sponge and it was unclear precisely how and when those particular members now found in vertebrates first arose. We present evidence that the classical vertebrate (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Natural genome-editing competences of viruses.Günther Witzany - 2006 - Acta Biotheoretica 54 (4):235-253.
    It is becoming increasingly evident that the driving forces of evolutionary novelty are not randomly derived chance mutations of the genetic text, but a precise genome editing by omnipresent viral agents. These competences integrate the whole toolbox of natural genetic engineering, replication, transcription, translation, genomic imprinting, genomic creativity, enzymatic inventions and all types of genetic repair patterns. Even the non-coding, repetitive DNA sequences which were interpreted as being ancient remnants of former evolutionary stages are now recognized as being of viral (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Is the “Histone Code” an Organic Code?Stefan Kühn & Jan-Hendrik S. Hofmeyr - 2014 - Biosemiotics 7 (2):203-222.
    Post-translational histone modifications and their biological effects have been described as a ‘histone code’. Independently, Barbieri used the term ‘organic code’ to describe biological codes in addition to the genetic code. He also provided the defining criteria for an organic code, but to date the histone code has not been tested against these criteria. This paper therefore investigates whether the histone code is a bona fide organic code. After introducing the use of the term ‘code’ in biology, the criteria a (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Short History of Biosemiotics.Marcello Barbieri - 2009 - Biosemiotics 2 (2):221-245.
    Biosemiotics is the synthesis of biology and semiotics, and its main purpose is to show that semiosis is a fundamental component of life, i.e., that signs and meaning exist in all living systems. This idea started circulating in the 1960s and was proposed independently from enquires taking place at both ends of the Scala Naturae. At the molecular end it was expressed by Howard Pattee’s analysis of the genetic code, whereas at the human end it took the form of Thomas (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Plant chromatin: Development and gene control.Guofu Li, Timothy C. Hall & Rachel Holmes-Davis - 2002 - Bioessays 24 (3):234-243.
    It is increasingly clear that chromatin is not just a device for packing DNA within the nucleus but also a dynamic material that changes as cellular environments alter. The precise control of chromatin modification in response to developmental and environmental cues determines the correct spatial and temporal expression of genes. Here, we review exciting discoveries that reveal chromatin participation in many facets of plant development. These include: chromatin modification from embryonic and meristematic development to flowering and seed formation, the involvement (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Cooperative interactions between epigenetic modifications and their function in the regulation of chromosome architecture.Frank Weissmann & Frank Lyko - 2003 - Bioessays 25 (8):792-797.
    Epigenetic information is encoded by DNA methylation and by covalent modifications of histone tails. While defined epigenetic modification patterns have been frequently correlated with particular states of gene activity, very little is known about the integration level of epigenetic signals. Recent experiments have resulted in the characterization of several epigenetic adaptors that mediate interactions between distinct modifications. These adaptors include methyl‐DNA binding proteins, chromatin remodelling enzymes and siRNAs. Complex interactions between epigenetic modifiers and adaptors provide the foundation for the stability (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Intercalary heterochromatin and genetic silencing.Igor F. Zhimulev & Elena S. Belyaeva - 2003 - Bioessays 25 (11):1040-1051.
    We focus here on the intercalary heterochromatin (IH) of Drosophila melanogaster and, in particular, its molecular properties. In the polytene chromosomes of Drosophila, IH is represented by a reproducible set of dense bands scattered along the euchromatic arms. IH contains mainly unique DNA sequences, and shares certain features with other heterochromatin types such as pericentric, telomeric, and PEV‐induced heterochromatin, the inactive mammalian X‐chromosome and the heterochromatized male chromosome set in coccids. These features are transcriptional silencing, chromatin compactness, late DNA replication, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Code Biology – A New Science of Life.Marcello Barbieri - 2012 - Biosemiotics 5 (3):411-437.
    Systems Biology and the Modern Synthesis are recent versions of two classical biological paradigms that are known as structuralism and functionalism, or internalism and externalism. According to functionalism (or externalism), living matter is a fundamentally passive entity that owes its organization to external forces (functions that shape organs) or to an external organizing agent (natural selection). Structuralism (or internalism), is the view that living matter is an intrinsically active entity that is capable of organizing itself from within, with purely internal (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Code Biology, Peircean Biosemiotics, and Rosen’s Relational Biology.Marcello Barbieri - 2019 - Biological Theory 14 (1):21-29.
    The classical theories of the genetic code claimed that its coding rules were determined by chemistry—either by stereochemical affinities or by metabolic reactions—but the experimental evidence has revealed a totally different reality: it has shown that any codon can be associated with any amino acid, thus proving that there is no necessary link between them. The rules of the genetic code, in other words, obey the laws of physics and chemistry but are not determined by them. They are arbitrary, or (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • From Biosemiotics to Code Biology.Marcello Barbieri - 2014 - Biological Theory 9 (2):239-249.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Lysine acetylation and the bromodomain: a new partnership for signaling.Xiang-Jiao Yang - 2004 - Bioessays 26 (10):1076-1087.
    Lysine acetylation has been shown to occur in many protein targets, including core histones, about 40 transcription factors and over 30 other proteins. This modification is reversible in vivo, with its specificity and level being largely controlled by signal‐dependent association of substrates with acetyltransferases and deacetylases. Like other covalent modifications, lysine acetylation exerts its effects through “loss‐of‐function” and “gain‐of‐function” mechanisms. Among the latter, lysine acetylation generates specific docking sites for bromodomain proteins. For example, bromodomains of Gcn5, PCAF, TAF1 and CBP (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Origin and Evolution of the Brain.Marcello Barbieri - 2011 - Biosemiotics 4 (3):369-399.
    Modern biology has not yet come to terms with the presence of many organic codes in Nature, despite the fact that we can prove their existence. As a result, it has not yet accepted the idea that the great events of macroevolution were associated with the origin of new organic codes, despite the fact that this is the most parsimonious and logical explanation of those events. This is probably due to the fact that the existence of organic codes in all (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Critical notice: Cycles of contingency – developmental systems and evolution. [REVIEW]James Griesemer, Matthew H. Haber, Grant Yamashita & Lisa Gannett - 2005 - Biology and Philosophy 20 (2-3):517-544.
    The themes, problems and challenges of developmental systems theory as described in Cycles of Contingency are discussed. We argue in favor of a robust approach to philosophical and scientific problems of extended heredity and the integration of behavior, development, inheritance, and evolution. Problems with Sterelny's proposal to evaluate inheritance systems using his `Hoyle criteria' are discussed and critically evaluated. Additional support for a developmental systems perspective is sought in evolutionary studies of performance and behavior modulation of fitness.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Histone modifications proposed to regulate sexual differentiation of brain and behavior.Khatuna Gagnidze, Zachary M. Weil & Donald W. Pfaff - 2010 - Bioessays 32 (11):932-939.
    Expression of sexually dimorphic behaviors critical for reproduction depends on the organizational actions of steroid hormones on the developing brain. We offer the new hypothesis that transcriptional activities in brain regions executing these sexually dimorphic behaviors are modulated by estrogen‐induced modifications of histone proteins. Specifically, in preoptic nerve cells responsible for facilitating male sexual behavior in rodents, gene expression is fostered by increased histone acetylation and reduced methylation (Me), and, that the opposite set of histone modifications will be found in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The evolution of floral homeotic gene function.Vivian F. Irish - 2003 - Bioessays 25 (7):637-646.
    Plant MADS‐box genes encode transcriptional regulators that are critical for a number of developmental processes. In the angiosperms (the flowering plants), these include the specification of floral organ identities, flowering time and fruit development. It appears that the MADS box gene family has undergone considerable gene duplication and sequence divergence within the angiosperms. Here I discuss the possibility that these events have allowed the recruitment of these genes to new developmental pathways in particular angiosperm lineages. Recent analyses of sequence changes, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the Origin of Language.Marcello Barbieri - 2010 - Biosemiotics 3 (2):201-223.
    Thomas Sebeok and Noam Chomsky are the acknowledged founding fathers of two research fields which are known respectively as Biosemiotics and Biolinguistics and which have been developed in parallel during the past 50 years. Both fields claim that language has biological roots and must be studied as a natural phenomenon, thus bringing to an end the old divide between nature and culture. In addition to this common goal, there are many other important similarities between them. Their definitions of language, for (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Semantic Biology and the Mind-Body Problem: The Theory of the Conventional Mind.Marcello Barbieri - 2006 - Biological Theory 1 (4):352-356.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Introduction to Code Biology.Marcello Barbieri - 2014 - Biosemiotics 7 (2):167-179.
    The New World of the Organic CodesThe genetic code appeared on Earth at the origin of life, and the codes of culture arrived almost 4 billion years later, at the end of life’s history. Today it is widely assumed that these are the only codes that exist in Nature, and if this were true we would have to conclude that codes are extraordinary exceptions because they appeared only at the beginning and at the end of evolution. In reality, various other (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Relational Basis of Molecular Codes.Dennis Görlich - 2014 - Biosemiotics 7 (2):249-257.
    Molecular codes can be considered a special type of mapping among molecular species in biochemical systems. The formalization of molecular codes allows to identify these in network models of real world systems. Analyzing algorithmically identified codes leads to the observation that codes does not necessarily stand alone, but that we can identify certain relations among codes. In this paper I will define two types of relations that can occur among codes, code linkage and code nesting, and will discuss implications of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Epigenetic cancer therapy: Proof of concept and remaining challenges.Cora Mund & Frank Lyko - 2010 - Bioessays 32 (11):949-957.
    Over the past few years several drugs that target epigenetic modifications have shown clinical benefits, thus seemingly validating epigenetic cancer therapy. More recently, however, it has become clear that these drugs are either characterized by low specificity or that their target enzymes have low substrate specificity. As such, clinical proof‐of‐concept for epigenetic cancer therapies remains to be established. Human cancers are characterized by widespread changes in their genomic DNA methylation and histone modification patterns. Epigenetic cancer therapy aims to restore normal (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The epigenetic basis for embryonic stem cell pluripotency.Henrietta Szutorisz & Niall Dillon - 2005 - Bioessays 27 (12):1286-1293.
    As well as having the remarkable ability to differentiate into all of the cell types in the embryo, embryonic stem (ES) cells also have the capacity to divide and self‐renew. Maintenance of pluripotency through repeated cell divisions indicates that the developmental plasticity of ES cells has a specific epigenetic basis. We propose that tightly localised regions of histone modification are formed in ES cells by binding of sequence‐specific transcription factors at genes that are destined for expression at later stages of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation