Switch to: References

Add citations

You must login to add citations.
  1. The permutations with N non-fixed points and the sequences with length N of a set.Jukkrid Nuntasri & Pimpen Vejjajiva - 2024 - Journal of Symbolic Logic 89 (3):1067-1076.
    We write $\mathcal {S}_n(A)$ for the set of permutations of a set A with n non-fixed points and $\mathrm {{seq}}^{1-1}_n(A)$ for the set of one-to-one sequences of elements of A with length n where n is a natural number greater than $1$. With the Axiom of Choice, $|\mathcal {S}_n(A)|$ and $|\mathrm {{seq}}^{1-1}_n(A)|$ are equal for all infinite sets A. Among our results, we show, in ZF, that $|\mathcal {S}_n(A)|\leq |\mathrm {{seq}}^{1-1}_n(A)|$ for any infinite set A if ${\mathrm {AC}}_{\leq n}$ is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The power set and the set of permutations with finitely many non‐fixed points of a set.Guozhen Shen - 2023 - Mathematical Logic Quarterly 69 (1):40-45.
    For a cardinal, we write for the cardinality of the set of permutations with finitely many non‐fixed points of a set which is of cardinality. We investigate the relationships between and for an arbitrary infinite cardinal in (without the axiom of choice). It is proved in that for all infinite cardinals, and we show that this is the best possible result.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cantor’s Theorem May Fail for Finitary Partitions.Guozhen Shen - forthcoming - Journal of Symbolic Logic:1-18.
    A partition is finitary if all its members are finite. For a set A, $\mathscr {B}(A)$ denotes the set of all finitary partitions of A. It is shown consistent with $\mathsf {ZF}$ (without the axiom of choice) that there exist an infinite set A and a surjection from A onto $\mathscr {B}(A)$. On the other hand, we prove in $\mathsf {ZF}$ some theorems concerning $\mathscr {B}(A)$ for infinite sets A, among which are the following: (1) If there is a finitary (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The cardinality of the partitions of a set in the absence of the Axiom of Choice.Palagorn Phansamdaeng & Pimpen Vejjajiva - 2023 - Logic Journal of the IGPL 31 (6):1225-1231.
    In the Zermelo–Fraenkel set theory (ZF), |$|\textrm {fin}(A)|<2^{|A|}\leq |\textrm {Part}(A)|$| for any infinite set |$A$|⁠, where |$\textrm {fin}(A)$| is the set of finite subsets of |$A$|⁠, |$2^{|A|}$| is the cardinality of the power set of |$A$| and |$\textrm {Part}(A)$| is the set of partitions of |$A$|⁠. In this paper, we show in ZF that |$|\textrm {fin}(A)|<|\textrm {Part}_{\textrm {fin}}(A)|$| for any set |$A$| with |$|A|\geq 5$|⁠, where |$\textrm {Part}_{\textrm {fin}}(A)$| is the set of partitions of |$A$| whose members are finite. We (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation